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In this thesis we study a relation between time scales and structural
properties of a class of systems represented by power systems. First, the time
scale decomposition of linear time invariant systems is studied. The proper-
ties of the time scale decomposition are shown to be defined by properties of
solutions of a generalized matrix Riccati equation. Use of the Riccati
equation formulation and a particular method for finding its solution led to the
result which shows that the singular perturbation method and modal method
for reduced order modeling are two extreme points of an iterative method for
the time scale decomposition: singular perturbation is its first point and
modal method is the limiting point. Convergence properties of a known class
of iterative methods for the time scale decomposition are characterized. A
method for the time scale decomposition of weakly nonlinear systems is proposed
as an extension of linear system analysis to nonlinear systems. Then, for
electromechanical model of power systems a connection between its time scales
and structural properties is established by showing that the so-called slow
coherency can be expressed in terms of the same Riccati equation used for the
time scale decomposition. It is shown analytically and then confirmed experi-
mentally on a few realistic size systems, that in the case of slow coherency,

the coherent areas are weakly coupled, and hence relatively independent on




the fault location. By using the Riccati formulation of coherency, an
efficient numerical algorithm for identifying coherent areas is obtained.
Finally, a possibility of extending this study to the direct transient

stability analysis of power systems is briefly discussed.
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1. INTRODUCTION

1.1. Methods for Reduced Order Modeling with Applications to Power Systems

An object of study in this thesis is the relation between
singular perturbation, modal methods and coherency when used for modal
order reduction of electromechanical models of power systems. We will
show that all these methods are closely related if coherency is suitably
defined.

Modal method, originally proposed by Davison [l] and further

analyzed by many researchers [2,3] consists of approximating the system

x=Ax , dimA=n (1.1)
by one of lower order
z=Fz , dimF = r. (1.2)

It can be shown [4,5] that modal methods can be understood as a particular

case of aggregation [6,7), i.e. there exists a matrix K, such that

z = Kx (1.3)
and

FK = KA. (1.4)
Aggregation matrix F is then given as

F = KAK+ s KK+ =1 (1.5)
In [5] it is shown that K has to be of the form

K = M(I oyx L (1.6)

where M is an arbitrary nonsingular r x r matrix and X is the nxn

matrix of right eigenvectors of A. With such K, and 9(.) denoting
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spectrum of a matrix,

o(F) € g(A). (1.7)

In modal methods of [1] M = er, which is r - dimensional principal
minor of X ordered so that the first r columns correspond to the eigen-

values to be retained in F, and

-1
= <+ .
F=Ay HARp%%y (1.8)
where X =X and X is "21" block in the matrix X.
11 rr 21

In the singular perturbation approach [8], it is assumed that

the state vector x consists of subvector x.,, with r basically slow

1’
variables, and of the complementary vector X, having variables with
mixed fast and slow dynamics. The presense of different speeds of

response in these two sets of variables is indicated by writing the model

(1.1) in the form

1 T ANX TAS

b
]

Ex A,.x. +A__x

2 T A1¥1 T A% (1.9)

where € > 0 is a given small number. The slow behavior of the system

is analyzed via the descriptor variable systeﬁ [9,10]

% .
(]

s Allxs + A12xf (1.10)

o
|

= Bp1Xs T A%

obtained from (1.9) by setting € to zero. Assuming A;i exists the slow
dynamics is modeled as

1

X = (All-A12A22A21)xS (1.11)
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The slow eigenvalues and the corresponding slow eigenspace of (1.9) are

continuous in € [10]. Consequently the slow component of system responses
is also continuous in € [8]. Therefore the slow behavior of (1.9) is
used as an approximation of the slow behavior of (1.9), whenever € is

sufficiently small. If

X, = 52& x
b3 g °f
then
= (4
x1 xs + 0(€)
= <+ - 5 .
X, = x, tx xs(O) + 0(&) (1.13)
In the model (1.9) there exists not only an eigenvalue separation
(going to infinity as € tends to zero) [8], but also there is a
difference in speed of variables in x., and x,. Such systems are called

1 2

[11] state separable systems. Systems which have eigenvalue separation
between slow and fast eigenvalues, but state vector can not be separated
into X, and Xy based on different speeds of response are called [11]
mixed state systems. For such systems and systems with larger € an
iterative separation of time scales of [12,13] can be used.

The problem of the time scale separation consists of finding

matrices L and H in the state transformation matrix

ry7 I -H 1|1 dﬁ&lf
to = Tx = Ii %
’_zJ Lo I -L I":_x,,J

such that L satisfies a generalized matrix Riccati equation

(1.12)

(1.1%)




T

R(L) =A,,L - LA, . - LA12L+ A.. =0 (1.15)

22 11 21

and H satisfies a Lyapunov type equation

P = - =
(H) BIH + HB2 + A12 0 (1.16)
In the above equatiomns B1 and B2 are defined via
r‘B 0
_1 1
TAT ~ = (1.17)
0 B

The solutions L and H have to be such that

IK(BI)I < | k(Bz)l ) (1.18)

A central problem in so defined time scale decomposition is existence and
form of the solution for L. This problem has been studied in [31,14,15,13].
It has been shown that the generalized, like the standard Riccati equation,
has many solutions; furthermore, whenever there is a solution for L the
existence of a solution for H is guaranteed. Several numerical schemes

have been proposed for solving the Riccati equation [12,13]. The

typical sequence has the form

_ -1
Lk+1 = (A22 + LA12) R(Lk) + lk (1.19)

Both modal methods [16,17,18] and the singular perturbation
methods [11] have been applied to power system problems. Independently
of these general system concepts, in the analysis of power systems a

specific method called coherency has been used for model order reduction.




This concept relies on an empirically observed phenomenon that after a

disturbance system responds in groups of machines, such that in each group

Yy,

all the machines have the same response. These groups are called coherent

groups. A numerical algorithm for identifying coherent groups based on

simulation of machine responses after a disturbance and checking which
machines satigfy the above property is given in [19]. 1In [20,21] it is
shown that coherency of a group of machines is equivalent to the reachable
subspace of the disturbance being in the null space of the output matrix
defined to give as output the differences of machine angles in the groups
In [16] it is indicated that coherency can be identified in a special

case of the modal method analysis, when XZIXEi of (1.8) has a special
structure, namely if each row has all elements zero except for one which
is 1. Other approaches to coherency include [22,23]; an extensiﬁe list of
references is contained in [24].

Having established the connection between modal methods, singular
perturbation and iterative time scale decomposition in [14], it is the
above result of [16} that motivated the work on defining partial
coherency in the framework of the time scale decomposition [25], i.e. in

terms of the Riccati equation. The alternative formulation of the

coherency led to a number of new results surveyed in the next section.

1.2. Contributions of the Thesis

The major contribution of this thesis is in establishing a link
between time scales, coherency and coupling between areas. It is shown
that if coherency is defined with respect to the slow modes of the system,

resulting areas are weakly coupled. In this case interarea motiomn

e - e M
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represents the slow dynamics of the system and the intermachine oscillations
within coherent groups represent systems fast dynamics. For the first
time it is argued amnalytically and then confirmed experimentally that so
defined areas are relatively robust with respect to parameter changes and
fault location in the system. The consideration of coherency is completed
by presenting a novel algorithm for identifying coherent areas which
beneficially exploits an amalytical definition of coherency via the Riccati
equation.

This work has been motivated by desire to overcome limitations
of existing methods for reduced order modeling of power systems. For
example, all existing methods for identifying coherency [20,21,19] depend
heavily on the fault location, making the identified areas valid only'
for the particular disturbance. The analytical work of [20,21] qualifies
coherency analytically, but suffers from the same fault dependance and
lacks an efficient algorithm for identifying areas. The modal method of

[18] is based on the linearized model of a part of the system (the one

outside of a specified subsystem, usually called the study area). As such
the approach can give errorneous results in the case of stronger coupling
between the two parts. The other common objection of the method is that
the reduced order system looses any physical meaning. 1In the modal ﬂ
approach of [16] the first objection is eliminated by considering
linearized model of the whole system. Furthermore, the connection with
coherency is indicated in case of the matrix X21X1;1 having the special
structure, as discussed earlier. However, neither explicit charazteriza-

tion of this coherency nor the method of manipulating the system so as to i

achieve this desired form of L given. In [26] coherency is defined as




partial coherency with respect to a desired subset of eigenvalues.

The algorithm for identifying coherent areas and the properties of those
are not elaborated on. Furthermore, none of the known works analyses
analytically robustness of the ares boundaries with respect to parameter

and load changes.

1.3. Chapter Preview

Chapter 2 establishes a background for the analysis of coherency
in power systems, which is the main theme of this study. This background
is found in the spectrum separation problem formulated in terms of a -
general matrix Riccati equation. Properties of its solution are studied
and as a result a relation betwéen singular perturbations, iterative
separation of time scales and the modal methods is established. An
algorithm for the time scale decomposition of weakly nonlinear systems is
proposed.

A short overview of the existing methods for the coherency
analysis of power systems is given in Chapter 3. Then a new defini-~
tion of coherency as a partial coherency with respe-t to a given
subspectrum is giver. in the framework of the spectrum separation problem.
A class of systems called r-decomposable éystems is introduced to study
the idealized coherency. The gained insight is then used in constructing
an algorithm for coherency identification of realistic (large) power
systems. An algebraic criterion is given for checking the validity of the

use of so called "area' variables, frequently used by power system analysts.
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Aggregation of linear and nonlinear power system models based

( ; on the partial coherency is studied in Chapter 4. When, instead of an

LARREEE A1

arbitrary partial coherency, the so called slow coherency is used, the
resulting areas are insensitive to small variations in network parameters.
Furthermore, in this case the areas are weakly coupled. Writing the

,v electromechanical model in terms of the area variables and machine angle

» differences (the differences of angles within coherent areas) transforms
*‘I the originally mixed state electromechanical model into the singularly

perturbed form. Use of the singular perturbation theory and the weak

coupling for the simulation of the systems responses is illustrated on a
nontrivial power system example.

Further uses of coherency in the direct transient stability
analysis and other possibilities of extending this study are discussed

in Chapter 5.




2. TIME SCALE DECOMPOSITION VIA RICCATI APPROACH

2.1. Problem Formulation

In this chapter a group of results will be given concerning
linear systems, among which we will have: the form and the properties of
solutions of Riccati equation (1.15); a relation between the time scale

decomposition, modal methods and singular perturbation methods for reduced

. order modeling; and convergence properties of a class of iterative

algorithms (1.19). For weakly nonlinear systems an algorithm for simulation
is proposed, which takes advantage of time scale decomposition of the
linear part. The algorithm is related on an example system with an

alternative, purely numerical algorithm.

2.2. Time Scales and Generalized Riccati Equation

We will first define a general spectrum separation problem
and then as a special case treat the time scale decomposition. We start
with the spectrum separation problem as given in [27] and then proceed
with physically more meaningful formulation of the same problem via solution
of a Riccati equation. The problem of spectrum separation can be defined

as one of fin4ing two lower order matrices F. and F2 such that F

1 1
reproduces a given subspectrum of A, S and F2 reproduces the complementary
subspectrum ci, o, U oi = g(A). We further want:

Assumption 2.1: o n ci = 9.

According to [27, first decomposition theorem], the problem of
spectrum separation is always solvable under the Assumption 2.1. To each
of the subspectra there corresponds a unique A-invariant subspace,sr o

. : cC ~ . . . . .
of dimension r and Sr = Z of dimension n -r, where X is n-dimensional
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*
vector space , such that the spectrum of A restricted to Sr is oL and the
spectrum of A restricted to S: is c:. Then A in this new basis is of the

form:

A= 2.1)

where o(Fl) =0 G(FZ) = G:. To verify above form let us note that for
all colum vectors in V1 we have AV1€ Sr. Hence, there exists a matrix

F. such that

1

AV, =V F, (2.2)

but this defines eigenvalue-eigenvector problem up to a similarity

transformation V, = X1K1, where X. is the matrix of r eigenvectors corre-

1 1

sponding to Gr. Similarly, for all vectors in V AV2 GS: and there

2’
exists a matrix F2 such that

AV, = V,F, (2.3)

. _ ¢ - . .
with U(Fz) = cr and V2 X2K2 for eigenvectors X2 and some nonsingular KZ'
The relation between the states of equivalent systems in which

A and Av are state matrices is given by
X =Vx . 2.4)

Notice that in order to achieve the spectrum separation it is sufficient
to consider only the invariant subspace corresponding to the given

subspectrum Tpes and complement the space by any independent n-r-dimensional

subspace. Of course, in this case one gets only a blocktriangular form of AV-

*
S_.C X is A-invariant if AS < §
r T T

Sl
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Let us consider now the transformation of (1.1) in the form

i
] ! x = [Vl V2]xv (2.5)

where ImV, is A-invariant r-dimensional subspace of X corresponding
to O and ImV2 spans n-r dimensional subspace of Z such that it does

not contain any of the vectors in the subspace ImV but otherwise

1’

arbitrary.

Remark 2.2: Since V1 has full rank, there always exists an ordering of

T

\Y
states in x for which V11 of V1 =| 11 is nonsingular. Due to this
v
21
remark we assume that x in (2.5) is ordered so that V11 is nomsingular.
That allows a particularly simple VZ’ V2 = [2] . With this choice of
V1 and V2 the transformation (2.5) can be rewritten as
r I 0 V11 0
X = -1 Xv (2.6)
v,.V. 1 0 I
21 11 |
The transformed state matrix is
v111 0 —1 0] I o] —V11 0 Fy Au_l
A = 2.7)
- . . |
0 1 L I L IJ IJ LO 9
where
L=v, v, ot (2.8)
2111 )
F,o=v. N +A LV, =v lpv (2.9)
1 11 11 12 11 11 7111
= - = 2
F, A22 LA12 82 (2.10)
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It follows from (2.7) that the spectrum separation can be achieved with
the transformation

- =1
x = x = TL X, | (2.11)

with the only requirement that Im [i] is A-invariant corresponding to

.- The significance of this transformation is that the states of X,

retain the physical meaning if the spectrum separation problem results
in L=0, i.e. if the original system consists of two decoupled
{through A21) subsystems. In cases of nonzero coupling between the
subsystems, the first r states of X, still retain their meaning, while

only the last n-r states are changed. After this transformation is

applied, we get

A = (2.12)

where B1 and B2

From (2.7) it also follows that in solving the spectrum separa-

are defined by (2.9) and (2.10).

tion problem it is necessary to make "21" block in the transformed matrix

equal zero. By writing the equation for '"21" block of (2.7) we get

R(L) = - LAy, +4,,L - LA,L+4,, =0 (2.13)

This equation has the form of a generalized Riccati equation. In the
case when A11 = - A22T it becomes the standard algebraic Riccati
equation found in optimal control and estimation theory. For later

reference we write this equation in the form [28,29]
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T 1

R (L) = - LF -FL + LR 'BIL - g (2.14)

for which underlining problem is one of finding control u of the
system

X = Ax + Bu (2.15)

so as to minimize J(x,u) given by
® T
Jx,u) = [ «TQx + u'Ru)dt (2.16)
o

The matrix E associated with (2.14), the same way A is associated to

(2.13), has the form

E = (2.17)
o

Therefore equation (2.14) is a special case in the spectrum separation
problem. Several standard results of (2.14) will be rephrased in the
light of the results on existence, form and uniqueness of the solution
of generalized Riccati equation (2.13), which are coming next.
Theorem 2.3:

Let an r-element subspectrum of A, cr be given, with no common
eigenvalues with its complement ci, o. n o: # 0, o U c: = g(A). Let Sr
be the corresponding A-invariant subspace of dimension r with its basis

. . nxr .
given as columns of a matrix VER , i.e.

AV = VF (2.18)

1
implies

a(F)) = o, (2.19)




Then,
(1) the solution L of the Riccati equation (2.13), such that
\'s
o(B;) = o_ exist if and only if the matrix V, of V= | ' |is nonsingular.
\
This solution is then given as 2
_ -1
L= L2V1 (2.20)
(ii) When columns of V are eigenvectors of A, then columns of Vl
are eigenvectors of Bl.
Proof: Equation (1.13) can be rewritten as
= 1.
R(L) = [-L IJ]A [#] =0 (2.21)
The equation will be satisfied if and only if
I
(a) Im [L]C Ker A, or
(b) ImAE’.JC Ker [-L. I] = Im [i]
But since (a) is already included in (b) we proceed with (b).
I I 1
= [y - =
ImA {LJ A Im [L] Ker [-L 1] Im LL] s (2.22)

i.e. for any solution L, Im [i

relate this subspace to the spectrum oL More specifically we will

] must be A-invariant. We now want to

be given o and the corresponding A-invariant subspace S_ with a basis

nxr

VER , and we want to see if there exists an L for which [i] will span

Sr' Clearly, if and only if VvV, is nonsingular such an L exists, since

1

from the requirement that V and {i] span the same subspace, there exists

< Prp— —

P

b llinh
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a matrix KeR' T for which
[I]= VK (2.23)
L ’ .
From rank I=r = rank VlK it follows that both V1 and K have to be of full
rank. Then K==V11; which proves (2.20). To prove o(Bl)= o, we write B1 as
. "1
; B1 =[I 0] A LL] (2.24)
= -1
Due to (2.18) and (2.23) with K = V1 , we have
: B, =[I 0] AVV Y= [1 OJVF, v} =v,r v}
t _ 1 * 1 11 1°'1'1
1 which completes the proof of (i) and (ii).
b
: The proof given here is more general than those given in
b
n [31,15,14]. 1In [31] only the case of diagonalizable matrix A has been
treated and a particular,eigenvector basis for Sr was assumed. In
[14,15] sufficiency has been proved. Namely if V spans an invariant
l[ subspace then the solution L is of the form (2.20). Here it is proved

that for L to exist it is also necessary that V spans an invariant

subspace of A. The form of the solution also applies to the standard
Riccati equation (2.14) with E of (2.17) playing the role of A.

A different proof for this equation is given in [30].

Remark 2.4: From the geometrical arguments used in the proof of the
theorem, it should be clear that I does not depend on the particular

choice of basis for an invariant subspace corresponding to a given spectrum.
We will however demonstrate this fact in matrix terms, which are more
suitable for computational purposes.

Proposition 2.5: Each matrix L solving the Riccati equation (2.7) is

independent on the choice of V spaning A-invariant subspace corresponding
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to a given spectrum.
Proof: Suppose that V spans A-invariant subspace corresponding to a given

spectrum g.- By assumption on existence of L, V., is invertible and

1
-1 er
L=V, If some V' # V spans the same subspace, then V' = iV K, for
L2
some nonsingular K. In this case
v -1
L' = (V,K)(V,K) ~ =1L, (2.25)

which completes the proof. From the theorem it follows that the Riccati
equation has many solutions. In fact for any o for which eigenvector

basis V has V1 invertible (due to the Proposition 2.1 any other basis can

be assumed) there corresponds one L. For the time scale decomposition
of particular interest is the case when Ur = cs, where cs contains r
smallest in magnitude eigenvalues of A. In this case the eigenvalues

of A are divided into the slow eigenvalues contained in B, and the fast

1

eigenvalues contained in B Due to the crucial role of this solution in

9°
the most of the results that follow, we introduce

Definition 2.6: The solution of Riccati equation (2.13) for which

,K(Bl)' < ,?\(BZ)I is called dichotomic and is demoted by L.

Remark 2.7: 1In case of the standard Riccati equation (2.14) and (2.17),
it is known [29] that under usual controllability =~ observability
assumptions, matrix E has exactly n eigenvalues with strictly negative
real carts, whose spectrum we will denote by 0; and, symmetric to those
with respect to the imaginary axes, n eigenvalues with positive real

+ -
part, whose spectrum will be T Among many solution of (2.14), of

particular interest is the one for which . = c; and B1 = AF =F - BR-lBTL.
In this case the Assumption 2.1 is satisfied. By the Theorem 2.3 S(Ap) = C;,
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Proof: It simply follows from rank V = r. Hence there exist r linearly
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i.e. the closed loop system matrix is stable. It is also easy to see

that there exists one solution L for which c(AF) = c:. The symmetry of L
can be concluded from RS(LT) = [RS(L)]T = 0 and uniqueness of the solution
‘corresponding to the same spectrum.

Remark 2.8: Let X be the matrix of right eigenzgctors (and generalized

| Xqq | -
eigenvectors) of A. If V of Theorem 2.1 is V =§ 11 1, then L = X21X1}
721 g
- -1 . 3
and B1 = A11-+ A12X21 11° But this B1 has exactly the same form as the

aggregated state matrix in modal method approaches. The spectrum
separation problem as defined by (2.1) and (2.2) indicates one less known
fact, that with almost the same computational expense needed to obtain
B1 in modal method approaches one can get also the matrix B2 (2.10) which
reproduces the complementary spectrum of A.

From the statement of the theorem and when Assumption 2.1 applies
it can be seen that the only condition under which the solution of the

Riccati equation does not exist is when V., is singular. Since at the time

1

when a spectrum o. is specified and some basis of the corresponding

A-invariant subspace is computed it is not known whether V1 will be

singular or not, the question arises: can the effort spent on computing V
(which is considerable as will be discussed in chapter 3 and &) be still

used to achieve the desired spectrum separation, even if V. is singular.

1

The answer is yes, due to the following Proposition [31].

Proposition 2.2: 1f V spans r-dimensional A-invariant subspace corre-

sponding to a given or, hen there always exists a state permutation

~ T A A ~
x =Px, A=PAP such that V = PV is A-invariant and V1 is invertible.
independent rows in V. From AV = VK, where Z(K) = Ur it follows that

]
¢ = pv.
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This result says that with the mere reordering of states, and

likewise reordering of rows of V there can always be found V. inverible,

1
i.e. the solution of the Riccati equation, now for the redefined system
i‘r (x,A). The singularity of v, is related to the controllability and

- observability of the subsystems of A. From the form of B1 and 32 2.9)

and (2.10), in which L appears once as a controller feedback matrix for

the pair (A11’A12) and the other time as an observer feedback matrix for
the pair (A22,A12), it can be seen that a necessary condition for V1 to
be invertibel (i.e. for L to exist) is that the modes of A.. uncontrol-

11

lable through A12 belong to cr = c(Bl), and the modes of A,., unobservable

22

through A 2 belong to the complementary spectrum ci = c(Bz). This becomes

1

apparent by noting, for example in the case of uncontrollability, that if

a XGci: is an uncontrollable mode of A then for any L this A will be

11°

in C(Bl), which is contrary to the requirement that Kéoz = U(BZ).
It should be noted that in most applications the approach via reordering

rows of V to assure invertibility of V1 is viable one. However, in the

case of standard Riccati equation, because of the structure of E, it is

not possible to permute rows of V, except within V1 and V2 in which

case it does not change singularity of Vl. However, under usual assumptions
on controllability-observability it is known that the unique solution for

L exists, which means that V1 is invertible. For some algorithms for the

time scale decomposition, one of which will be presented in the next
section, it is important to make reordering of states to assure inverti-

bility of v, before the algorithm is applied. From the form of the

1
transformation (2.11) and the requirement that A(Bl) < K(BZ) it can be

concluded that the reordering of states should be such that Xy contains
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the slow variables of the model and X, predominantly fast variables. For
cases in which physical considerations or previous experience cannot help
make such ordering,states can be ordered so that the first row of A has the

smallest norm, the second row has the next largest norm, and so on.

2.3. Practical Aspects of the Spectrum Separation Problem

In practice R(L) cannot be made zero, except in very special cases.

Therefore, it is of interest to see how accurately c(Bl) and 0(B,) of

. AL |
s, = | 1 12
IL_R(L.\ B,

, (2.26)

in which R(L) is supposedly small, reproduce o. and c:. Equaticn (2.26)
repreéents the lefthand side of (2.7) for some L; we assume it is close
to the solutuon corresponding to a given o.- The answer to the above
question is given in the following theorem, given in [32].

Theorem 2.10: Let !All? = trace (ATA) and define § = inf {iipB,~B,Pil:

- " 1 p
per )X pi = 1), 1f
1 ! ' ]
IR 1A,
12 1
- < 5’ (2.27)
3
then there exists a unique PER(n-r)xr satisfying
et i §
P < 2 LROAL (2.28)
such that
Im 'I] (2.29)
_P.
is an invariant subspace of Av. Moreover g(Av) is the disjoint
union
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G(Av) = O(B1-+A12P) U c(BZ"PAlz) . (2.30)

In practical applications, when R(L) is sufficiently small we approximate

By Ay

approximates c(Bz-PAlz), and, finally, In:[

Av with , So that c(Bl) approximates c(Bl-+A12P) and c(Bz)

0

theorem states that the error is directly proportional to P, whose norm

I] approximates Im[;] . The

is bounded by the norm of R(L). In other words there is a continuity in
the change of spectrum and the invariant subspace for small changes in
R(L). The number § in the theorem is a measure of spectrum separation
between B1 and BZ' If B1 and 32 are symmetric this number is equal [32]
to the smallest in magnitude difference between any two eigenvalues of
and B, contain common

1 2

eigenvalues, in which case it is equal to zero. However under Assumption 2.1

B1 and BZ' This number is positive, except when B

it will always be positive. Condition (2.27) indicates that the Riccati ?
equation has to be solved more precisely if either there is a strong
connection between B1 and B2 subsystems through A

between the two subsystems is small.

12 °F spectrum separation

L.J__..

oy

We now use the theorem to give an alternative interpretation of 3

some of the standard results in the singular perturbation theory [8]. ]

When the state matrix of (1.9), which is

T

A A !
Al = | 'is transformed by means of the transformation (2.11),

i A A

| f21 P2

e € |

- A, Ay

the corresponding Riccati equation is R(L) = - LA11 + é" L - LAloL + —E—

For small € the dominant terms in the equation are those containing €. :

Hence a natural choice of an approximate L solving the equation is the
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one which annihilates €-dependent terms. This leads to L = -

B -1
By =451 " A48

-1
A22A21, and

= As’ which is the slow state matrix as given by
(1.11). To apply the Theorem 2.10 we have to check the condition (2.27).

It can be shown that for nonsingular A,, and sufficiently small €, 6==0(%L

22
%* *

and hence there exists an € such that for all €€(0,€"] the condition

(2.27) is satisfied. Therefore, there exists a P = 0(€), such that the

spectrum of A' is given as a disjoint union

A
22 -1
1y = << . - 2.30
c(A') cr(AS +A12P) J o( z A22 A21A12 PA12) , (2.30)
I
and the slow eigenspace of A' is spanned by . Because of
-1
Ayg by TE

P = 0(€) this result exhibits the continuity of the slow eigenvalues

and the slow eigenspace with 66(0,8*]. A slight difficulty in extending
the argument to hold for € = O is avoided in [10}, where in addition the
continuity of the inverse of the fast eigenvalues and the fast eigenspace

*
with €€[0,€ ] is proved as well.

2.4. Relation Between Singular Perturbation, Time Scale Decomposition
and Modal Methods

In the previous section it has been shown that the time scale
decomposition and the modal method for reduced order modeling are the
same in regard to the slow subsystem. In addition time scale decomposi-
tion formulation reveals the fact that with the same expense spent for
obtaining the slow subsystem state matrix, the fast state matrix can be
obtained as well. For some engineering applications it is not necessary

to find exact invariant subspaces, or equivalently the exact solution of




Theorem 2.11: Let ASR™ ™. Then there is a unitary xec™”
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the Riccati equation [11]. Instead, an iterative algorithm for the time
scale decomposition is established, whose results after only few
iterations are then used. In this section we will relate so defined
time scale decomposition with the singular perturbation and the modal
methods.

A basis for comparison of the methods is found in the simultaneous
iteration method for computing invariant subspaces of general (nonhermitian)
matrices (SI for short) [32]. We will first review relevant facts about
this method and then establish the relation.

For matrix A let ll,kz, .. be eigenvalues ordered so that
p- 2 .
|>\1| |x2| c.. 2 lxnl (2.31)

Let cr denote the spectrum consisting of the r largest in magnitude
eigenvalues, and let Sr be the corresponding r-dimensional invariant
subspace. Furthermore, let Qr be r-dimensional subspace with nonzero
projection on Sr along the complementary invariant subspace. Then, if
lxrl > Ikr+1|, Aer tends to Sr as k tends to infinity. For

r = 1 this corresponds to the well known power method for obtaining the
eigenvector for the largest eigenvalue Kl.

Before presenting an algorithm which uses this sequence to
find a basis of the invariant subspace let us recall the result about
Schur-decomposition of a matrix [32,38].

" such that
S = X*AX (2.32)
is upper triangular. The matrix X may be chosen so that the diagonal

elements of S which are eigenvalues of A are in descending order of

absolute value.
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For distinct eigenvalues corresponding columns of X are unique up to
multiplication with a unit length number; for multiple eigenvalues of
multiplicity p, the corresponding p columms in X span unique p-dimensional
subspace. 1If Xr denotes first r columns of X then A-Im Xr==Im Xr’ i.e.
these columns span r-dimensional invariant subspace corresponding to cr.
Column vectors in X are usually called Schur vectors.

Now let us explain one step of SI algorithm for finding a basis

of Aer. Define rxr matrix B as

*
B=V AV, (2.33)

and apply the decomposition of Theorem 2.3 to B

() B X =S, (2.34)

Let Qk = kai, which is obviously a basis for AkQ. A basis for the next

step is obtained as

Q. = AQ 2.35)

To summarize, the algorithm consists of orthonormalizing an arbitrary basis
matrix (Qk+1’ say) to get V, then forming B (2.33), decoupling low
order matrix B according to (2.34) and using unitarr matrix Qk to perform
the next step (2.35).

Convergence behavior of this algorithm is given in the following
lemma due to [32].
Lemma 2.12: Let S be equivalent matrix to A according to Theorem 2.11.
Let El denote the matrix consisting of columns 1 through 4 of 1 and E2

denote the matrix consisting of columns £Z+1 through r. 1If Iy

. . , nxr
'l.l >| A ' then there are matrices, W, <R with orthonormal columns
r r+l'’ k
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divided on W= (Wl,WZ), W1€Rnxz, W2€Rnx(r-z) such that
k
1. In(¥) =59 (2.36)
2. W, =g, +o(r /5 (2.37)
R c+1’ 2 -
- k
3. W, =E, + 0(|xr+1/xr| ) (2.38)

The lemra shows the speed with which individual columns in Q of (2.35)
tend to the corresponding Schur vectors. The speed is linear with

the factor 5i for the i-th Schur vector,defined as

X
e R .2 s (2.39)
N PN
i
and the convergence of the algorithm is global.

Practical details about the realization of the algorithm are
contained in [32]. For our purpose we need only the established result
about global convargence of the algorithm with the linear speed defined
byai.

We also rewrite the algorithm (2.33) - (2.34) in the form

AV, =V (2.40)

Using this form of the algorithm we now characterize the convergence
properties of a class of iterative algorithms for solving Riccati

equation represented by (1.19) [13]. We rewrite it here for conveniznce

-1
Lol = L = (Bgp ~LAp) RO (2.41)
Theorem 2.13: Let r be given such that IREJ >|Xr+1|, with the eigen-
- 9
| Vi |
values of A ordered according to (2.31). Let Vk = | i be an
Y
L 2k

I

Py

e el

adnidhod

Basnd.
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nxr matrix with nonzero projection of column vectors on the

[ ( -1 -1

r-dimensional slow subspace of A. If V1k exists, denote Pk = VZkvlk .
Then, if LO = PO’ the sequences Pk generated by (2.40) and Lk generated

by (2.41) are identical. Furthermore, |X(B1(Lk))| < |X(B2(Lk))| for
sufficiently large k.

Proof: Writing (2.40) in expanded form, substituting P for V

K 1k 2K’

eliminating V1 from the equations and regrouping the terms, directly

results in Pk = Lk' Since Im V1k tends to the slow subspace of A, due

to the Lemma 2.11, Bl(Lk) will eventually contain the r slow eigenvalues
of the system.
This result shows that the Riccati iterations (2.41) have

global convergence, with the speed determined by the largest 6i, i.e. Sr

which corresponds to the slowest converging Schur vector in the SI

method. Furthermore the spectrum of B, = A11+A12Lk tends to Og» which

1

means that L, tends to Ld' In [15] it is shown that Ld is the only

stable equilibrium solution of the matrix differential equation
L = R(L) (2.42)

The following relation between singular perturbation, modal methods and

i the iterative time scale separation is immediate consequence of the above
theorem.
Corollarv 2.14:
Let Bl(k) be defined as Bl(k) = A11+-A12Lk’ where Lk
is defined by (2.41) for LO = 0. Then
(i) Bl(l) is the slow state matrix obtained from singular
perturbation approach (1.11)
®
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(ii) Bl(k)’ k - ® 1is the modal method slow state matrix, and
(iii) Bl(k)’ 1 Sk< x, is the slow state matrix of time

scale separation.

1
0 1 2 A1

of the form given in (1.11). This proves (i). From Theorem 2.12

Proof: Substituting L. = 0 into (2.41) gives L, = - A; and Bl(Ll)

Im [ik] tends to the invariant slow subspace of A as k goes to infinity,
which due to the Remark 2.8 means that Bl(Lk) tends to the slow subsystem
matrix obtained from modal methods. The case (iii) is the case in

between singular perturbation and modal methods, which offers advantage
over the exact modal method when low accuracy is acceptable but 8r is

not sufficiently small that only one iteration of the singular perturbation
approach sufficies.

This corollary, in view of Lemma 2.11 and Theorem 2.13 gives a
numerical interpretation for why the singular perturbation approach is
successful in case of small €&: it is simply because the speed of conver-
gence is so high (proportional to S-k) that only one iteration is needed

to make Béél sufficiently small. The corollary also suggests one meaningful

interpretation of the small parameter €, as being the eigenvalue ratio

We now give several examples to illustrate properties of the

iterative time scale decompositionm.

Example 2.15: 1In this example we demonstrate the importance of the state

ordering for the time scale decomposition . Given (2.43) and r=2,

s o0 1
X = |o 1 1|x (2.43)
0o 0 1
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it is evident that the state matrix has two Jordan blocks: one of

size 1 corresponding to the simple eigenvalue 5 and the other of size 2
corresponding to the eigenvalue 1. From the triangular structure of

this matrix it is evident that the spectrum separation is already achieved
for any choice of o.- However, the time scale separation is not achieved
since the large eigenvalue 5 appears in the "11" block. We specify

r = 2 and want to find matrix L,, which is a part of the transformation

(2.11) so that c(Bl) = {1,1}. The Riccati equation has the form
- . . /5 0\ _ ‘1 -
R() = - (4 4y) 1+ (2 4) (0 1) 0,24 (1) @y 4y =0

from which two solutions can be found easily: L1 = (0 0) and L2 = (=4 0).
For the first solution B1 has eigenvalues 5 and 1, i.e. nothing is changed
from (2.43). Only the second solution results in the desired spectrum

of B,, i.e. Ld = L2' Application of the iterative algorithm (2.19) to this

1°
system results in the convergence behavior given in fig. 2.la. After
initial divergence the algorithm achieves asymptotic behavior predicted

by the Lemma 2.12. To start the algorithm we have perturbed slightly A21,
since for the usual initial condition L1= A;; A21 the algorithm would

stay at the unstable solution L = 0. This example shows several interesting
points. First, it emphasizes the importance of state ordering, for if

the state ordering was such that A11 had the eigenvalues close to the
eigenvalues of the desired Bl’ the algorithm would have started from the
falling side of the curve a, in fig. 2.1. The situation is illustrated

by the curve b, which corresponds to the ordering of states (xz,x3,x1)

and a small A21. This is also one of the reasons for the success of singular
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Figure 2.1. Iterative separation of time scales for the systems of
Example 2.15.
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perturbation approach, in which it is required that the states be ordered
according to their speeds (1.9). This example shows that even though the
eigenvalue separation exists, only after the states are properly nrdered
one step approximation of the singular perturbation approach is successful -
as indicated by the curve b as opposed to the curve a. Second character-
istic of the example is that it contains multiple eigenvalues, and

still achieves the asymptotic behavior predicted by Lemma 2.12. In other
words the individual generalized eigenvectors corresponding to multiple
eigenvalues may not be unique but the space they span is unique, as
discussed in connection with Theorem 2.11.

Example 2.16: With this example we demonstrate applicability of the
techniques of this chapter to the solution of the standard Riccati equation
(2.14), associated with the optimization on infinite interval. The

problem is to find a control u which will minimize criterion (2.16) for

the system with

0! 4 0|
., R=1, Q= !
1, 0 1

, i

1]
(@]
(@]

0 -2

o 1 |
= LB
! |
" L
It is easy to check that (A,B) is controllable pair, and (A,C) is

observable pair. 1In fact the system is stable since eigenvalues are

0 and -2. The objective of the design is ts improve 1its performance.

The matrix E (2.17) for this system is
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whose eigenvalues are (-2,-1,1,2). If we define spectrum separation

problem for E with 02 = (-2,-1), then corresponding B1 = A -BR-IBTL
would be the closed loop feedback matrix whose spectrum would be 02 and
the feedback gain K from u = Kx would be K = - R-lBTL. The spectrum of

B1 indicates improvement in performance over the open loop system.
Now, we want to use globally convergent subspace iteration method for

computing the solution L. Since the eigenvalues of C, are not the

2

largest in magnitude eigenvalues of E, we perform bilinear transformation

E = (E -oL)(E +oI) - (2.44)

which has the property to preserve the invariant subspace corresponding

to Ur, and has eigenvalues

A(E) - ©

ME) = 5y 7o (2.45)

so that the n eigenvalues corresponding to Re A(E) <0 can be made to be
the largest in magnitude eigenvalues of E with a suitable choice of .

A ¢ that sufficies is

© > sup{Re M(E), 1= 1,2, ..., 20} (2.46)

In this example we estimate ¢ = 5. We now use subspace iterations (2.40)

vith E and initial guess randomly selected as

- -
1 -.2

1 .7 é

VO ) -.3 1 |
5 -.8
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Figure 2.2. Solution process for the standard regulator
problem.
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a function of the number of iterations. The behavior is as predicted

by the Lemma 2.11. After 1l iterations elements of L.. differ from the

1
Convergence is faster for systems whose closed loop system matrix has

11
6 2
corresponding elements of the exact L = [2 ] by less than 0.01.

larger margin of stability since in this case the eigenvalue separation

between the eigenvalues with positive real part and the eigenvalues with
A E
n+1( )

negative real part is bigger, and hence € = ———— 1is smaller. This example

A, (E)
demonstrates the possibility of using the advantage of having globally con-
vergent algorithm for solving the Riccati equation, for either initializing
the faster converging algorithms, such as [33], which require initial guess
close to the final solution, or directly use it for, say, large sparse
system matrices A. Because of the simplicity of the algorithm it can also
be used for smaller order systems when limited computer capabilities are
available.
Example 2.17: This example illustrates time scale decomposition of
one machine infinite bus power system model. The form of the model and
the linearized state matrix [34] are given in Appendix A. The
iterative time scale decomposition using the algorithm (2.41) is exhibited
in fig. 2.3d, for the case r =2, which is the case with the fastest
convergence. The behavior of the subspace iterations for the same model

and different r is given in fig. 2.3. The convergence criterion for

r

the latter is derived from (2.34) by defining E = (Xllz)"-BXB-SB E(elez... e ).

This example will be completed in the next section after the block-
diagonalization is discussed, by showing a relation between the number of

iterations in the time scale decomposition and the quality of the

approximation.
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2.5. Block Diagonalization

After the spectrum separation is completed, the system state
matrix is in the block triangular form (2.12). For some application
it is useful to have the two subsystems, whose dynamics is contained in

B, and BZ’ completely decoupled. In geometrical terms it amounts to

1
finding a basis for invariant subspace corresponding to the spectrum G:,
as indicated by (2.4). 1In matrix terms we can apply a similarity
transformation to (2.12), similar to (2.11)
y I H|
{
t

= x =T x (2.47)
z ! 0 I

which does not change the physical meaning of the last n - r components

of X, When this transformation is applied to (2.12) it results in

- - -

‘B, A, "B P(H)—]f
= , (2.48)

where

P(H) = HB2 - B1H + A12. (2.49)

The solution of P(H) = 0 is a function of the solution L of R(L) = O.
It is well known that equation (2.49) always has a solution when
Assumption 2.1 is satisfied. 1In case when Gr = c'(Bl) contains r slowest

modes of A, this solution can be found as the limit of the sequence
H .. = (B,H, - A,)B ! (2.50)
e T By ~ App)By

This can be seen by writing (2.50) as

hk+l = Ahk + b

(X, —l -
(1®8,)  [(B, ® Dh, -a (2.51)

12]
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where ® denotes the Kronecker product. The eigenvalues of A are
A(A) = X(Bl)/X(Bz) so that [X(&)|< 1 and hence Hk converges to a unique solution.
Combining transformations (2.11) and (2.47) we get the complete

transformation between x and (y,z) as
= . “ g =T *x (2.52)

where L and H satisfy (2.13) and (2.49), respectively.

For some engineering applications where time scale decomposition
is required, only a few iterations of (2.41) and (2.50) for L and H are
sufficient. Figure 2.4 is the power system of Example 2.17 where the
responses of the system based on subsystem integration of (Bl,y)
and (Bz,z), combined through (2.52) into x are compared with the slow
approximation y. The matrices B,,B, and T contain L and H obtained after

1’72
two iterations of (2.41) and (2.50).

2.6. Time Scale Separation in Weakly Nonlinear Systems

Simulation is still dominant method of analysis for many
systems, especially for nonlinear systems. An objective of the analysis
is to investigate the effect of parameter changes on system behavior,
or to detect system instability. The emphasis is usually on the speed
of simulation rather than on accuracy. Yet, the speed of simulation
is constrained by the wide range of dynamic phenomena encountered typically
in large scale systems. In other words some variables of the system
respond much faster than the others (in linear systems this is to say
that there is a spread of eigenvalues). We say that system possesses

multitime scale property. This property is indicated by writing the
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system model in the singularly perturbed form
;(1 = Cpl(x].’xz) (2'53)
8x2 = mz(xl,xz) (2.54)

for x in some domain D, as in (1.9) for linear systems. Assuming
that the fast subsystem is stable along any trajectory initiated in D,
[8], the analysis of (2.53), (2.54) is performed in two time scales
avoiding so the stiffness of the model, in much the same way as in
the analysis of the linear singularly perturbed systems. The problem
arises when all states have mixed fast and slow components, i.e. in
the mixed state case. In this case meaningful decomposition of the state
vector as in (2.53),(2.54) is impossible.

This section addresses the problem of the simulation of two

time scale mixed state systems transformable to the form
x = Ax + £(x), £(0) =20 (2.55)

if f(x)ecl* and has small Lipschitz constant. We will call such

systems weakly nonlinear since basic characteristics of their behavior
are determined by the linear part. Hence, two time scale property

of (2.55) implies that the matrix A has two groups of eigenvalues widely
separated in magnitude. If T is the block diagonalizing transformation
(2.52) for the matrix A, such that slow eigenvalues are in B1 and fast
eigenvalues are in 32 (B1 and B2 are defined by (2.9) and (2.10)),

then a transformation of variables

.

“Cl is a class of functions with continuous first derivative.
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W
=7 |7 yl_|'1
X T [2} . [z]—[wsz (2.56)

can be used for the nonlinear model as well, in which case (2.55) becomes

y B, 0 y
1= + WE(x) (2.57)
- 0 B z

¢ where W is the inverse of T given explicitly by (2.52). 1In the above
}
;' model y and z represent predominantly slow and predominantly fast

variables respectively, which are decoupled through linear part, and

weakly coupled through the nonlinear part (the weak coupling is the
consequence of the assumption on f as having small Lipschitz constant).
The system (2.57) is now in singularly perturbed form and the standard
singular perturbation approach can be applied:

(i) solve the slow subsystem
y = By + W £(y,2) (2.58)

0

Bzz + sz(yzz) (2.59)

for y and z, and

(ii) solve the fast subsystem

- ~ - y
z = Bzz + B,z + sz(T [24—2]) (2.60)

Ly
for z. Then approximate the solution x by x =T ! -
L z# |
Implicit assumption in this algorithm is that the fast subsystem

Jacobian

T, =B, +W, =— (2.61)
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evaluated along ; and z has Rek(Tf) < 0 and z(0) is in the appropriate

domain of attraction [8]. Under this assumption z can be expressed

as a continuous, unique function of ;, and hence a unique solution of

(2.58) and (2.60) exists in ; and z. Solving this equations can answer

the question of slow subsystem stability, and complete system behavior.
I1f, however, we assume that system is stable and want to observe

its slow behavior only,for different initial conditions in the stability

domain, or after a change in parameters, then a useful combination of

the linear and nonlinear simulation can be achieved if the system is

presented in the form (2.57). 1In this case after some time tc’ such

that f(x) is sufficiently small, the simulation can be continued on the

low order linear subsystem } = Bly- We illustrate now some of the

potentials of this approach, and some differences from other related

approaches to simulation, on the one machine infinite bus power system,

whose model is given in Appendix A. Let us denote that model as ; = @(x).

For integration we use the predictor-corrector method of [35], but do

not investigate which numerical method is the best. We will show a set

of figures with responses of x., which is typical of what we want to show.

1
On each figure there are two responses: solid line is always the full
system response, i.e. the solution of ; = ¢(x). The dashed line corresponds
to different approximations of the slow response, each of which will now
be explained.

First the system is linearized around the stable equilibrium,
aad the linearized state matrix A is given in Appendix A. Then

f(x) = 2{x) -Ax. For the block-diagonalization of A we specify r=2,

Ty = Us and use T of (2.52), in which L, H, B1 and B, are as obtained

R
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after two iterations of the algorithms (2.41) and (2.50), respectively.

Now the model is in the form (2.57). Figure 2.5 gives x, as obtained by

1
solving (2.53) and (2.54) with € set to zero. The error is unacceptable.
Figure 2.6 shows the nonlinearity present in the slow system response,
since the dashed curve is the response of y = Bly. The true nonlinear
slow response should be a line which would pass in between the weggles of
the solid curve. Figure 2.7 gives the response of the slow

component of Xy5 which result from solving (2.58) and (2.59) for ; and
using the back traasformation X, = ; (which comes from x =T [g] ).

The improvement of this approach (application of singular perturbation to
the transformed system) over the application of singular perturbation to
the original model is significant. On the next figure, fig. 2.8

the slow rasponse of %, is given as computed by using nonlinear model

1
(2.58), (2.59) for the first two seconds only, and then for the rest of

the time using linearized, low order model ; = Bly. In addition larger
step size is used. Here the nonlinear model is used to initiate properly
the slow linear subsystem. The effect of nonlinearities is evident from
comparing these responses with fig. 2.6.

In some resent approaches to numerical integration of singularly
perturbed and descriptor variable system [36] it has been proposed to
integrate the original system (2.53), (2.54) but adjust the step size of
integration according to the slow component of the local error (see [50] for
numerical integration details). For "filtering" the errror in order to
get its slow component a matrix very much related to wl(2.53) is computed,

whenever the step size has to be changed. Based on the power system

example only, it seems that that approach may give more accurate response
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of the slow dynamics if required, then it is possible by solving (2.58)
(2.59). However, slow dynamics of (2.58), (2.59) permits much larger
step size than in the method of [36]. This is useful when a quick
approximate solution is satisfactory. The difference in accuracy between
the two methods is illustrated for the case when both are forced to use

very large step size, fig. 2.9.
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3. PARTIAL COHERENCY

3.1. Introduction

Application of the modal method for the reduction of the multi-
machine electromechanical model of power systems, has been tried in [16,18].
However, more successful has been the use of coherency. Two generators,

with responses denoted by xi(t) and xj(t) are called coherent if
xi(t)-xj(t) = const. (3.1)

Groups of machines in which any two generators satisfy this criterion are
called coherent groups or coherent areas. Once coherent areas are known the
reduction of the model order is achieved by replacing all the coherent
generators by one. A critical step however, is the grouping of the machines
into areas. Coherent machines are identified either from actual or

simulated machine responses [17,18], or by an algebraic evaluation of the
modes present in the linearized model [16,20,21,23]. Most analytical methods
require that machines be coherent throughout the duration of their transients.
We propose here a less demanding definition of partial coherency. It may

be interpreted as a requirement that the equivalent machines of the areas
represent as closely as possible a preselected group of modes. In the next
chapter it will be shown that in the particular case, when these modes are
the slowest modes of the system, the resulting area decomposition is
relatively independent of fault locations and loading conditions. In our
approach partial coherency is related to the spectrum separation of the
previcus chapter. In the ideal partial coherency case the solution L of the

suitahlvy formulated Riccati equation has the elements made of zeros and ones,
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which unambiguously define coherent areas. 'The subsystem reproducing comple-

mentary subspectrum turns out to model intermachine dynamics, showing that
in the case of ideal partial coherency the interarea and intermachine
dynamics are decoupled. In a nonideal case our approach is to search for a
solution L which can be approximated by the matrix of zeros and ones. In
this case areas are made of machines which are near-coherent in the pre-
selected modes, and weakly coupled rather than decoupled area and intermachine
dvnamics.

In connection with power system stability study, there is
continuing interest in the development of a systematic area decomposition
procedure. Our grouping algorithm reduces the decomposition procedure to the
computation of a basis for the invariant subspace corresponding to the given
subspectrum, and a Gaussian elimination of a low order matrix.

In the next section we present an electromechanical model and
review some of its properties. An overview of existing approaches to
coherency will be given in Section 4.3. In Section 4.4 the concept of partial
coherency will be introduced and its properties analyzed for ideally decom-
posable systems. A grouping algorithm developed for near decomposable
systems will be given in Section 4.5. The algorithm will be illustrated by
a 48 machine example. Physical meaning of the variables associated with

the decomposition of a system into coherent areas will be given in Section 4.6.




3.2. Electromechanical Model

The electromechanical model of a power system with n generators

labeled from 1 to n and m load buses labeled from n+l to n+m is given by [52]

5, = w

ii i1 i gl
N s 9
= Z i - + v, = cen .
Pgi jilvivaijSIn(Gi j) ViGii i=1,2, ,n (3.2)
j#i
N 2
= i - + = e .
PQi jElvivaijsnx(éi Gj) viGii i=n+1, oN (3.3)
j#i
where
N = n+m
Gi = for 1<i<n rotor angle of machine i; for ntl <i< N bus angle of
the load bus i-n (radians)
wy = speed of machine i (per unit)
Pmi = mechanical input power (per unit)
Pgi = generated electrical power of machine i (per unit)
Mi = moment of inertia of machine i
Di = Damping constant of machine i (per unit)
Pli = negative of load consumed at the load bus i-n.
Bij = reactive part of the admittance counnecting buses i and j
Gii = i-th diagonal entry of the real port of admittance matrix.

Assumptions associated with the model are:

Assumption 3.1: Mechanical input power Pmi and load PQi are constant,

Assumption 3.2: Active power losses are neglected, i.e. active part of

admittance matrix is neglected.
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Assumption 3.3: Active and reactive power flow are decoupled, i.e. bus

q voltages are assumed constant in the model (3.2), (3.3).

t! Model (3.2) and (3.3) contain both dynamic and static equations. In linear

system theory such models are known as descriptor variable systems [9,10].
Study of the descriptor variable system obtained from (3.2) and (3.3) by

linearization around a stable equilibrium point reveals to a great extent the

intermachine oscillation behavior. The linearized model is 1
r . r W r 7
AS 0 I 0 0 AS 1
Aw 0 M ot 0 Aw
= (3.4)
0 H 0 -1 H AP
88 gl g
] 0 ] _Hzx 0 0 le— LAe |
where T
T _ sk gk ok
AT = (61 61,62 62,...,5n 6n) ]
T _ _ &
Aw (...,wi wi,...) ‘
T _ ok ok 3
A8 (6n+1 6n+1""’6N GN)
b
T * 1
AP = (...,P _-P",.,... 3
g ( gi ei ) :
4
oP 9P
_8 _8 B q .
3s 36 gg gl
B=1sp 3P | = (hyy) (3.5)
T . . 1
38 26 2g 28
n k
- Tt h.. i=j b
j#1 13
hij " (3.6)
B, .cos (6 -6 i1# 5
-vivj ijcos i~ j) i#]
Bij = reactive part of the admittance between buses i and j.
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1f H;i exists (by the assumption on stability of the equilibrium, Hmi is in

fact positive definite) (3.3) can be reduced to

X 0 I AS
= - - (3.7)
Aw Y M || aw
where
-1,
K=zH -H H = (k,.). 3.8
g8 gl 22 2g ¢ j) (3.8)

Matrix K has several useful properties which can be deduced from the pro-
perties of the Jacobian H. First, due to (3.6) H and K are symmetric. From
(3.6) it can be seen that matrix H has one zero eigenvalue with the corre-~
sponding eigenvector vT= (1,1,...,1). The same is true for the matrix K,

namely Kv. =0, where v, is the n-vector containing first n components of v.

1 i 1
This property can be derived as follows. Let vy be n-vector containing last
n components of v. Then, from Bv=0 we have
e (3.9)
Vo T TR g1 '
so that
- -1 = = -
Kv1 = (H 2z Hggﬁggﬂg )v Hggvl + ngvz (H oz gQ’)v 0. (3.10)

This property shows that each diagonal element of K equals the negative sum
of the off-diagonal elements in the same row. Under the assumption

Assumption 3.4: [Si—djl< n/2, if Bij#O we have that the off-diagonal

elements of H are negative, which due to the zero eigenvalue-eigenvector

property means that the diagonal elements are positive. The same is true for

- * -1
K since then Hli has all its eclements positive so that - HgQHxxﬁzg

*
Matrix H 1 is Minkowski matrix_ for which Theorem A.2 of [57]
applies asserting that the elements of H;% are positive.
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is negative, and hence all the off-diagonal elements of K are negative as
well. Due to (3.10) it means that the diagonal elements are positive.

Based on the properties of matrix K==(kij) it can be assumed that
the elements kij are of the form (3.6). In this way we define an equivalent
admittance matrix connecting generator buses only. Under Assumption 3.4 the
off-diagonal elements of the reduced admittance matrix are of the same sign,
and its diagonal elements are negative sums of the off-diagonal elements in
the same row. An alternative way to get the same kind of model is to
transform each load to an equivalent admittance, and then eliminate all load.
buses. In summary we will assume that the electromechanical model is in the
form (3.7) in which.kij elements have the form (3.6) for some equivalent
admittance elements Bij' This model has several properties which allow even
further simplifications.

At §* and w*, the eigenvalues of (3.7) are of the following three
types (see Figure 3.1 for an example):

1. a zero eigenvalue corresponding to the motion of all the machine
angles,
2. a small negative real eigenvalue corresponding to the aggregate
speed of all the machines, and
3. (n-1) pairs of lightly damped oscillatory modes which typically
range in frequency from !, to 2 Hz.
Models involving more details, such as excitation systems and governors would
still contain the above set of eigenvalues, modified mostly in the damping and
not in frequency [19]. Since the small damping constant Di does not signi-

ficantly affect the frequencies of the oscillatorv modes [27], it can be
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neglected. See Figure 3.1 for a typical pattern of eigenvalues of (3.7).

Thus the model used in our approach is

% = M lkx = Ax. (3.11)

The properties of the A matrix are as follows:

(P1) A has zero eigenvalue whose eigenvector is

v'f =1 1...1). (3.12)
Property (Pl) follows from Avl==0, which is due to (3.6) as the sum of each
row in A= (aij) is
n .1 B
L a,, =M, Lk,. =0, i=1,2,...,n. (3.13)

1 1] 1 j=l ij

(P2) A is diagonalizable because it is similar to the symmetric

matrix

RYSRCT e (3.14)

where Ml’2 is the positive symmetric square root of M. Thus, all the eigen-
values Ai of A are real. Furthermore, under assumption that the equilibrium
of (3.2) and (3.3) is stable, they are all nonpositive [51].

(P3) 1If A is the state matrix of the system (3.7), with damping
neglected, then the relation between eigenvalues and eigenvectors of A and

A is

X=+ A, . (3.15)

If x is an eigenvector of A corresponding to Ai’ then the two eigenvectors of
- T /—TT . .

q A are (x",+ VX x') . Because of such simple relations between eigenvalues
and eigenvectors of 2nx2n matrix K, and nxn matrix A, we choose to deal in

our approach only with the lower order A matrix.
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There are two ways of representing disturbances in such linearized
models. In [19,21,23] the disturbance is modeled as an external input to
either unreduced model (3.4) or the reduced (3.7). All the standard
disturbances - generator outage, line switching and load shedding - are
modeled as the equivalent change in load and generation. The duration of the

external input equals the duration of the fault. Hence the model is

% = Ax + Bu 0stst, (3.16)
% = Ax £ >t (3.17)
where
0 0
A is the state matrix of (3.7) and B =
H
R S | gL . 1
M, M [ ] (Hyp)
1
AP
= input: u = n
“ ; oP, | °
')
Hil = "22" block of the Jacobian H modified in structure to account for a
line outage; otherwise equal to le.
tC = clearing time - duration of the disturbance.

In our approach disturbance is modeled as an initial condition at t=tc for
the linearized system (3.11) around a postfault equilibrium point. In other

words only the low order version of (3.4) is considered.

3.3. Review of Existing Coherency Methods

Coherency has been a fruitful approach to the model order reduction
of power systems. The need for repeated simulation of larger and larger power

systems has emphasized even more the role of this technique. A reflection of
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this situation is the existence of a number of different approaches to
coherency identification. In this section we give an overview of several
characteristic approaches, in order to identify the limitations and gain
insight into the problem.

In [37] the conditions for coherency of a group of machines are
derived starting from the definition (3.1) and using (3.2), (3.3), and, in
addition, the equations for the reactive power flow. The conditions are
expressed in terms of machine internal voltages and interconnecting admit-
tances as follows. A group of r machines in an n machine system is coherent

if and only if

B.. \Y
ij s , - _X
a. M (Vicoséir JVi51nGir) M Brj
i r
i=1,2,...,r; j=r+l,...,n (3.18)

b. the disturbance is outside the coherent area.
This condition indicates how strict requirements are to be satisfied for
coherency to exist. One case when they are satisfied is when there are several
machines on the same bus. To deal with the practical systems a less restric-
tive condition is needed. The one of reference [37] is given using the
linearized model (3.16). If r machines are to be coherent, and if the
corresponding states are the first r states of x in (3.16) then the condition

for coherency is expressed as
a. HKIZH < g (3.19)
b. HBluH < u

for some small numbers ¢ and u. Matrices 517 and B, are rx(n-r) "12" block

1

of A and rxl block of B. 1In other words coherency is a result of weak

alk




coupling of the group of r machines with the rest of the system and the

disturbance is outside the group. The reference [37] does not contain an
algorithm for identifying areas.

In [20,21] coherency is related to controllability observability
of (3.16). The output is defined as follows. If a coherent- area is to
contain r machines, that is

H

t
Ir-l,r'l : 0 Xz Cx (3.20)
1

where x has been ordered so that first r components are the states of the
coherent machiens, then a necessary and sufficient condition for coherency is
that

Im Q CKer C (3.21)

where Qc is the controllability matrix (B,ZB,...,Kn_l

B). This condition
simply says that from any of the machine differences in the coherent area
the disturbance should not be seen, either because the controllable modes are

unobservable through C or because the observable modes are uncontrollable

through B. In the case of nonideal coherency it is suggested to measure the

distance between the two subspaces of (3.21) and define coherency when the
distance is small. An algorithm for checking the condition (3.21) would be
based on singular value decomposition [44] of several matrices of the same
order as the order of the system, and is therefore inappropriate for large
power systems.

The approach of [23] implicitly exploits the controllability-

coherency relation. Two basic ideas are realized. First, that machines which
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are coherent in the model (3.16), i.e. during the fault, will be coherent
throughout the entire response period. Second, coherency is essentially
defined with respect to the modes which are excited by the disturbance.

Namely, eigenvectors of the modal matrix M from

x(t) = Mz(t) (3.22)
are multiplied by the initial values of mode excitation, i.e. the matrix

M = Mz(0) (3.23)

where z(0) is 2nx2n diagonal matrix with the ith diagonal entry equal to zi(O)
is considered. Then two machines i and j are declared coherent if the dif-

ference Mmi—mﬂ|< ¢ for some small &, where m, and mj are row vectors of M.

i
The method requires computation of all eigenvalues and both right and left
eigenvectors of the matrix A. For large power systems this may require con-
siderable computer time and memory.

Instead of normalizing all the eigenvectors, as in (3.23), the idea
of using only a few preselected modes (a few eigenvectors of M) to define

coherency has been explored in [26]. There the coherency of machines i and

j with respect to mode k is defined as the requirement that

angle(mik,mjk) < e <mf2 (3.24)

where m and m,

ik 5k are (in general) complex elements of the matrix M. For a

real eigenvector this requirement means that the elements of the k-th eigen-
vector corresponding to the i-th and j-th machine have to be of the same sign.
The criterion means that the machines i and j are accelerated (decelerated)

by the power from the rest of the system for more than half a period of the

k-th frequencv. Coherency with respect to the group of modes is defined so




that the criterion (3.24) is satisfied with respect to each mode of the

group.

The idea of using coherency for model order reduction has found
overwhelming response from industry after it had been promoted in [41], and
in particular after a complete computer program has recently been developed
and its utility demonstrated on a number of large systems [19]. The method
employed is a direct application .f the definition (3.1), which means that
to obtain system response, the integration is needed for each disturbance and
then comparison of responses for each t on some time interval. A fast inte-
gration method (trapezoidal integration) is used to keep the numerical burden
on the reasonable level. The method, however, does not provide any insight
into the relation of coherent areas to the system parameters, as in the
previous me““ods.

In all the previous methods coherent areas depend on the location
of the fault. Therefore for each new fault reevaluation of the areas has to
be made. In [39] an attempt has been made to overcome this difficulty, and to
come up with the areas which can be used for more disturbances. A solution is
found in a probabilistic approach. Namely, a set of disturbances, i.e., inputs
u in the model (3.16) with given probabilities is used. A measure of

coherency between machines i and j is computed as

T
e /L [ (x,-x.)2dt = Vel se. (3.25)
Tp o 1 ] 1]

1]

where p is selected to make Cij finite for T+,

T
[ Efx(t) x(t)}de, (3.26)

S ==
T o
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and eij is the vector of zero elements except i-~th, which is 1 and j-th

which is -1. It is easy to see that smaller values of cy indicate that

3

machines i and j are coherent. Of particular interest is the case of the

infinite time interval. Then S can be expressed as1
s = ATB(R+ B (AD)T (3.27)

where A and B are defined by (3.16), u is the expected value of u, and R is

its covariance matrix. AI is defined as
A" =X X (3.28)

where A1 is a 2n-2 diagonal matrix of nonzero eigenvalues of (3.16) and X

is its matrix of right eigenvectors. For zero mean, independent identically
distributed disturbance R+-uuT= I and S of (3.27) depends only on the para-
meters of the system. This dependence is made explicit in [39] by writing
part of (3.27) in terms of transformed matrix A, rather than via eigenvalues r
and eigenvectors. However, by using the above form to eliminate all the
modes of the system which cause insignificant changes in S, it has been
concluded in [39] that the eigenvalues of the reduced system, based on
coherencyv and eigenvalues of the reduced system based on the modal method
[15], are approximately the same.

This important connection between coherency and modal methods has

also been indicated in {16] under the special condition that L of (2.11) has

1This expression is different from [39] in that it is independent
of the choice of reference machine whose choice may be a problem, but is in
fact irrelevant for the existence of coherent areas as will be shown later in
the chapter.

Y




59

the structure in which each row has only one zero element equal to 1, and all
other elements equal to zero.

Most of the presented coherency methods concentrate on the develop-
ment of an alternative coherency criterion, in order to avoid direct
simulation, implicitly required in Definition 3.1. Except for [19] none of
the methods offer an algorithm for identifying coherent areas, which is
efficient enough to be applied to large power systems. Most of them, except
[39,26]) would give areas which are valid for only one disturbance.

The coherency definition and the corresponding algorithm for
identifying coherent areas, which will be given in the rest of this chapter,
are aimed at overcoming the difficulties of the existing methods and
retaining their good characteristics. We use the result of [16] directly
to define the so-called ideal coherency. Systems with ideally coherent areas
serve to give us an insight which we then use in analysis of realistic power
systems, in much the same way as the descriptor variable system analysis of
(1.11) serves to give insight into the behavior of singularly perturbed
systems (1.9). A result of this approach is the new algorithm for identifying
coherent areas, designed for application to large power svstems. Analytical
study reveals that so obtained coherent areas are almost independent on fault

location and nonlinearities of the system.

3.4. Partial Coherency

Considering the definition of coherency (3.1) and the model (3.17)
it is clear that coherency can be achieved only if the initial condition
x(0) is such that only r modes are excited, for some r<n. This is also

clear from the coherencv condition (3.21), for if dim‘hn@c)=n, this would
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mean that there exists a single disturbance which would excite all the modes,

but then C must be zero matrix which means that there is no coherency. In

r other words, each case of coherency is a partial coherency. 1In this section
we will give & new formulation for the existence of partial coherency in terms

of generalized Riccati equation. The coherency will be connected with the

MM S Sem ank o 4

..

spectrum separation problem treated in Section 2.2. Let us first define
partial coherency.

Definition 3.5: Given r eigenvalues of A in (3.11), oL~ Then machines "i"

and "j" are coherent with respect to o (partially coherent) if for all t of

.

interest, possible t€ {0,»), and any initial condition x(0), their angles

xi(t) and xj(t) satisfy

xi(t)-xj(t) = zij(t) (3.29)

where zi.(t) contains none of the modes from cr. A coherent area consists of
all the machines coherent to each other.

F!n We note that in this definition no machines from different areas can
be coherent, that is, no coherent area can be divided into more areas.

Although Definition 3.1 does not require that the number of coherent

1 areas equal the number of modes r, systems with this property, which will
be called r~decomposable systems, are of particular importance. The study of
} r-decomposable systems 1s an essential step toward the analysis of more
E ¢ common ''mear-decomposable' systems, that is systems with near-coherent rather
; than coherent areas.
E Definition 3.6: The machines "i" and "j" are near-coherent if in Definition
®

' 3.1 the contribution of the modes from Or in Zij(t) is small. A near-coherent
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area consists of all machines which are near coherent to each other. An r-
near-decomposable system consists of r near-coherent areas.

Our approach to the identification of coherent areas is to first
consider this problem for r-decomposable systems. We show that in this
idealized case the solution of the matrix Riccati equation (2.13), which
separates the spectrum of A into cr and oi, automatically groups the machines
into areas. We then use this result to develop a grouping algorithm for
near-decomposable systems.

We first study the definftion (3.29). 1In each area i, consisting
of n, machines, there are only ni-l independent functions zij(t). We can
form a basis of these functions for the areas by selecting arbitrarily one
machine which we call reference machine, and forming the differences of all
the other machines in the same area with respect to that machine. Doing so
for all r areas we form n-r angle difference functions zij(t). If we denote
by xl the vector of r machines selected as reference machines in the areas,
and by x2 the n-r vector of the remaining machines, which we will call
follower machines, then the zij variables making vector z can be written in
terms of x variables as

z = xz-Lgxl. (3.30)

By comparing (3.30) with (3.29) it can be seen that the matrix Lg has in
each row only one nonzero element which is equal to 1. For the row j,
corresponding to the j-th follower machine, if the element 1 is in column i,
that means that the j-th follower machine and the i-th reference machine are
. . , 1 2

in the same area. This means that given x, x , and Lg the coherent areas

are uniquely defined. Therefore we call the matrix L a grouping matrix,
5
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since it groups the follower machines with the reference machines. However,
when the areas are specified, there is not a unique choice of variables for
xl and x2; to each choice of xl and x2 there corresponds a different Lg' As

an illustration consider a three area five machine system. Given

1 _ T
X = (xl,xz,x3)
2 T
X = (x3,x5)
1 0 0O
L = (3.31)
& o1 o0

the three areas, which are composed of machines 1 and 3, machines 2 and 5

and machine 4, are uniquely defined. For the same areas a different choice of

1 _ T
X (xa,x3,x2)
2 (3.32)
X7 = (x,,x.)'
1’75
will result in a different Lg
0 1 0
L = (3.33)
& lo o 1

Note the zero column in Lg of (3.31) or (3.33) indicates the presence of a
single machine area. Equation (3.30) can be interpreted as a special case

of the transformation (2.11)

(3.34)

The substitution of (3.34) into (3.11) results in
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1. 1
[x"1 [ B A1

= (3.35)
z LR(L) B1 z

where B BZ’ and the Riccati equation R(L) are given by (2.9), (2.10), and

1°
(2.13). To meet the definition (3.29) system (3.35) must have the following
properties. First z has to contain only modes corresponding to oi, for any
initial condition x(0). That implies that R(L) =0 with L being the solution
corresponding to the spectrum g Next from (3.34) and (3.29) it follows
that L==Lg. These observations allow an alternative formulation of coherency
in terms of the generalized Riccati equation.

Theorem 3.7; In an n-machine system let x1 be the angles of r noncoherent
machines and x2 be the angles of the other n-r machines., This system is
r-decomposable if and only if the solution L of R(L) =0 corresponding to a
given o is a grouping matrix L=L .

Proof: According to Theorem 2.3, z will have only the modes corresponding

to o: if R(L) =0 such that Im [i] is the invariant subspace of A corresponding
to or. For the definition (3.29) to be satisfied this L must be equal to an
Lg' Conversely, if a solution of R(L) =0 exists and is Lg, it satisfies the
definition (3.29).

Suppose now that the system is r-decomposable with respect to a given S but
we do not know its areas. How can Theorem 3.3help us find them? First, we
make a choice of xl and xz, which in turn defines the corresponding equation
R(L) =0. 1If our x1 does not contain coherent machines this equation will
have the solution L which is the grouping matrix needed to define areas. 1If
our xl contains coherent machines, the solution L will not exist. The
negative outcome would mean that a new choice of xl would have to be made

and a new equation R(L) =0 is solved.
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The situatiou is considerably more involved if this direct search
is applied to a near-decomposable system due to the fact that L is no longer
a grouping matrix. A further difficulty is that for any choice of machine
angles xl, the solution L usually exists. In principle, one can make all
reasonable choices of xl and form the set D defined next.

Definition 3.8: Given o and a basis V of the corresponding invariant

. v
subspace of A. Consider V= PV=[{,;'] , where P is any permutation matrix

Define D= {£=V2VI } for all P such that Vzl exists.
If the system is indeed near-decomposable, the set D will contain at
least one element sufficiently close to a grouping matrix Lg' One possible

measure of the approximation between L and Lg is a norm of A==L-Lg. The norm

is defined as the maximum sum of absolute values of row elements, that is

r
Lj =max I [&..]|, L=(2,.). 3.36
I = max j=ll 15 ;) (3.36)

Thus if there exists a solution in D which is also a grouping matrix, that

is, a decomposable system, then the norm (L—Lg) is zero. In a near-
decomposable system, one can search over all the solutions in D and find one
which minimizes norm (L-Lg). The systematic method for area identification

in the next section avoids this exhaustive search. However, it is interesting
to show an example of the search procedure. Let us decompose into two areas

the simple three-machine system (Figure 3.2) whose model is

-14.3 5.43 8.83
14.3  -49.4 35.1 | x. (3.36)
58.4 81.4  -140.

X

Let the spectrum 9, consist of the two eigenvalues of smallest magnitude.

There are only three possible choices of reference machines for this example,

SRR e,
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H(sec)=6.4 H(sec)= 3.01
D{pu)=2.5 Dipu)=1.0
1.63 pu — 2| 8 7' |6 "l’ ~———0.85pu
O —<
0.0654 py = _ 0.1095pu
V,=1.012 +j0.1648 pu 10+j0.35pu | V371022 +)0.08292 pu
Pz —>
9 _ 5 S i
1.25 + ;0.50 pu 0.90 +j0.30 pu
4
1——V;21.04 + |0 pu
f@? H(sec)=23.64
0.723pu  0.2703pu  D{pu)=9.6
FP-6963
Line # From To R(pu) X(pu) B/2(pu)
1 1 4 0. 0.0567 0.
2 4 5 0.017 0.092 0.079
3 5 6 0.039 0.170 0.179
4 3 6 0. 1.0586 0.
5 6 7 0.0119  0.1008 0.1045
6 7 8 0.0085  0.072 0.0745
; 8 2 0. 0.0625 0.
8 8 9 0.032 0.161 0.153
9 9 4 0.01 0.085 0.088

Figure 3.2. An example of the 3 machine system.
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1_ T _1_ T 1_ T
X (xl,x3) s, X -(xz,xB) , and x (xl,xz) and two possible choices of Lg,

[0 1) and [1 O). As our first choice of reference machines consider
x1= (xl,x3)'. Then the solution of the Riccati equation, which is for the

given spectrum the dichotomic solution is
Ld = [~0.47 1.47]. (3.37)
0f the two possible Lg matrices, the one with the best approximation of

Ld is Lg= [0 1], with

HLd-LgH = 0.94. (3.38)

The second choice of x1==(x2,x3)T will result in a dichotomic solution of the

corresponding equation R(L) =0
Ld = [-2.13 3.13]. (3.39)
Of the two possible grouping matrices the one which is a better approximation

of Ld is Lg= [0 1], with

HLd-LgH = 4.26. (3.40)

The third possible choice of x1= (xl:,xz)T will result in the dichotomic solu-

tion of the corresponding Riccati equation
Ld = [0.32 0.68] (3.41)
which is best approximated with Lg= [0 1]. This gives
- = (0.64. 42
IILd Lg“ 0.64 (3.42)

The third choice of reference machines results in the solution L which can

be better approximated by an Lg than for any other choice. The areas defined
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by the resulting Lg are machine 1 in one area and machines 2 and 3 in the
other area. There are several other observations that can be drawn from

this example. First, by comparing (3.41) and (3.37) it can be seen that
there is more than one choice of reference machines which result in the same
area definition, although the grouping is most clearly displayed in the third
case. The second choice of reference machines results in Ld with the largest
norm. This is the case when the reference machines are taken from the same
area. If this system was r-deéomposable, we would not have had the solution
at all.

In remark 2.8 it was pointed out that the spectrum separation and
the modal method order reduction are equivalent problems. In Theorem 3.7 it
was shown that r-decomposability can be expressed as the spectrum separation
problem. Hence for r-decomposable systems all the three methods for reduced
order modeling: modal method, spectrum separation, and coherency are directly
related. After the aggregated model based on coherent areas is presented in
Chapter 4, it will be shown that the modal method and this aggregated model
based on coherency have the same eigenvalues. Therefore one of the tests for
validity of areas can be the comparison of eigenvalues of B, and 32 (3.35)
with those of A where B1 and BZ are computed according to (2.9) and (2.10) by
using Lg for L. For our three machine system U(Bl)= {0, -28.6}, G(Bz)= {-175},
and o(A) = {0, -37, -166}, which is another indication that the areas are
near-coherent.

The above direct search in the three machine example is presented

only as a motivation for the systematic algorithm presented in the next

section.
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3.5. Grouping Algorithm

From the three machine example it is apparent that finding the areas

consists of two interdependent tasks: first choosing the reference machines,
and second associating the other machines to the reference machines. The
approach used in the three machine example is to exhaust all possible choices
of xl and Lg’ that is for each L, a particular Lg was found to minimize norm
(L-Lg). The best choice of xl is the one corresponding to the smallest of
these minima. When the order of the system is large, this exhaustive search
would be computationally prohibitive. Due to the properties of the set D
established next in Lemmas 3.5 and 3.6, the exhaustive search can be avoided.
The algorithm presented in this section computes only one element of the set
D, which does not necessarily minimize norm(L-Lg), but still uwnambiguously
determines the areas.
Lemma 3.9: Given c. such that 0€ o Then every element L€ D defined by
Definition 3.4 has the property

T

L,.=1, i=1,2,...,n-5, (3.43)

a z .
(@) L ay,

that is the sum of row elements equals 1, for each row;

(b) il > 1. (3.44)
Proof: From the proof of Theorem 2.3, if u is an eigenvector of Bl’ then
u
v = (3.45)
Ldu

is an eigenvector of A. In particular, if V==Vo, then from (P1)
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uo 1
v=vy = =|:1. (3.46)
o
L,u 1
do

Thus (3.43) is obtained by writing L in scalar form. The (b) follows

d%
from (3.43) and the definition of the norm (3.36).
Notice that every Lg has the norm equal to 1. Hence the search for

a grouping matrix due to (3.44) has to be based on the elements of D with the

small norm. Based on (3.44) we can define a grouping error as follows.

Definition 3.10: Let Lm be an LED with the smallest norm. Then a grouping
error for a given Lg is

E = Ile-Lgll . (3.47)

From this definition it follows that O0<E<», with E=0 if and only if the
system is r-decomposable.

Using the connection between coherency and spectrum separation
analyzed in the previous chapter, we can now analyze why some solutions to L
have large norm. L is computed using (2.20) for a given basis matrix V.
From the fact that [E;] is also a valid basis of the invariant subspace
corresponding to s it follows that any other basis will have identically
the same row vectors in V corresponding to the machines in the same area.
Geometrically, there will be r distinct groups of identical row vectors of V.
In the case of near-coherency we will have, instead, r narrow nonoverlapping
cones containing all the row vectors of V. Now it is clear that if reference
machines, which give components of the vector xl, contain two machines from
the same area, then the resulting Vl will have two identical row vectors (in

the case of r-decomposable systems, or near-identical in t case of r-near-

decomposable svstems) and hence the solution will not exist, or will have a
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very large norm. That was the case with the second selection of reference
machines in the example of the previous section. Since at the time of
computing a basis V it is generally not known whether the selection of
reference machines is good or not, the question is whether the effort spent
on computing V (which is considerable) is lost. The following result
answers the question.

Lemma 3.11: Given a subspectrum o of A and a basis of the corresponding
invariant subspace V. Then each element L of D is a solution of the Riccati
equation corresponding to 9. for the system with state vector X =Px.

Proof: If V spans an invariant subspace of A then PV spans the invariant
subspace corresponding to the same subspectrum of PAPT. The result then
follows from Theorem 2.3. This result shows that to find an L in D with a
small norm we need to compute a basis V for a given state ordering, and then
perform a suitable permutation of rows. In finding such a permutation we
benefit from the geometrical interpretation of coherency requiring existence
of narrow cones of row vectors in V. Hence, to ensure invertibility of V1
we want to select r vectors from the r different cones. In this way we ensure
invertibility and well conditioning of Vl' To find this set of r rows, we use
Gaussian elimination with complete pivoting. During the elimination, the rows
and columns of V are permuted such that the (1,1) entry of the resulting V is
the largest entry in magnitude. Note that permuting the rows of V is equi-
valent to changing the ordering of the machines. This (1,1) entry of V is
used as the pivot for performing the first step of the Gaussian elimination.
Then the largest entry is chosen from the remaining (n-1)x(r-1) submatrix of
the reduced V and is used as the pivot for the next elimination step. The

elimination terminates in r steps and the machines corresponding to the first

M
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r rows of the final reduced V matrix are designated as the reference machines.
In this Gaussian elimination process, rows having small entries will not be
used as the pivoting row because these small entries are the result of eli-
mination with almost identical rows already used as pivoting rows. Thus,
this algorithm does not put two near-coherent machines together as reference
machines.
For the set of reference machines fcund by the algorithm the

corresponding L is readily computed from
T.T T

2

V.L" =V

1 (3.48)

using the LU decomposition of Vl obtained from the Gaussian elimination. The

next step is to find an Lg approximating L, that is to find the machines
belonging to each area.

From 3.47) we see that if row vectors of V1 are understood as a
basis for an r-dimensional spdace, then elements of L are coordinates of the
row vectors of V2 in this basis. Specifically, the elements of a j-th row

of L, Ejl,ljz,...,l.

jr’ are coordinates of the j-th vector in V2 on

MEACTEREI AP If we now recall the geometrical image of coherent areas as
consisting of narrow nonoverlapping cones of row vectors in V, and that the
Gaussian elimination selects r vectors from r different cones, it becomes
clear that in each row j of L, corresponding to a machine which belongs to
some area k, there will be only one element close to 1, which is the pro-

jection of the j-th vector of V_, on the basis vector v, along the space

2 k

spanned by vectors Vis i=1,2,...,r, i#k; all the other coordinates of this

vector, i.e., all the other elements in the same row of L will be small.
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Therefore to find an Lg from a computed L we proceed as follows. In each

row of L we find the largest positive element, approximate it by one and
approximate all other elements in the same row by zero. In view of the above
analysis this is a suboptimal procedure for minimizing the norm of L-Lg, i.e.,
the grouping error of Definition 3.10. Although we cannot always claim that
Ll <iL'l, L'€D (therefore the suboptimality of the algorithm), it is clear
from the geometrical explanation that for near r-decomposable systems the
algorithm gives a unique definition of areas. 1In other words if the
"coherency copes" are sufficiently narrow, no matter which reference

vectors are selected as long as there are r vectors from r different cones,
the belonging of the other vectors to these cones is uniquely defined by the
largest element in each row of L. In this case HL—LgH==O(€), where € is the
largest angle among two angles in the same cone. As the angles of the cones
start increasing, the criterion for machine grouping based on the largest
element in each row of L becomes less discriminative. For each follower
machine we can define a discrimination factor as follows.

Definition 3.12: Given an LED with the smallest norm, let i be the column

index of the largest positive element and k be the column index of the second
largest positive element in the same row. The discrimination factor for

the follower machine j, DFj is

= -2l -le, -2 A
DFj ]IIILj iII il 5 k"l (3.49)

where Qj is the j-th row of L and ei is the i-th row of the (rxr) identity
matrix.
The largest value of DF is 2, which is in the case of misplacing

ideally coherent machines, and the smallest value is zero, which is in the
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~

case when vjev2 has the same coordinates on both vi and v vi,v €v,.

k’ k™1
Machines with the small discrimination factor should be given special
consideration. First, they can be grouped based on approximating the second
largest element in the row by one if that choice is more convenient for some
reascn (for example to achieve an area grouping consistent with the administra-
tive boundaries of the areas). Second, in the case of network changes these
are the machines most likely to change their area belonging.
We now summarize the grouping algorithm as follows:
Step 1: Decide on the number of areas and spectrum o
Step 2: Compute a basis matrix V for a given ordering of the x variables

and o _.
r

Step 3: Apply Gaussian elimination with complete pivoting to V and obtain

the set of reference machines.
Step 4: Compute L for the set of reference machines chosen in step 3.

Step 5: Construct the matrix Lg ana find the machines in each area.

The main computational load is in step 2. However, only a partial eigen-

subspace V of A is required and since A is similar to a symmetric matrix,

eigenvalue-eigenvector computation is well conditioned {46]. The numerical

aspects of the basis computation will be discussed in more detail in

Section 4.8.

We illustrate this arza selection procedure on a 48 machine system
from [18]}. The data are given in the reference. From the linearized svstem
state mitrix A, we extract the nxn matrix A of (3.11) by eliminating rows of

- A corresponding to 8 and columns corresponding to w. This matrix is given

in Aprendix B. In the first step we specifv that we want nine areas with

]



74

respect to the nine slowest modes. From this point on the algorithm proceeds
automatically giving the following results. 1In step 2 a basis for the 9-
dimensional slow subspace is computed. In step 3 the Gaussian elimination
is performed and the set of reference machines is found to be 5, 39, 44, 34,
48, 41, 17, 29, 36. In Step 4 the solution L is found (for this selection of
the spectrum it will be a dichotomic solution) and it is given in Table 3.1.
The largest element in each row, those elements are underlined in Table 3.1,
is used to identify the belonging of the corresponding machine to an area,
i.e., this element is approximated by 1 and all other elements in the row by
zero. As a result the following grouping of machines into areas is obtained:

Area 1: 1, 2, 3, 4, 5, 6, 7, 8, 9

Area 2: 39, 42

Area 3: 43, 44, 45, 46

Area 4: 34, 35

Area 5: 48

Area 6: 32, 37, 38, 40, 41

Area 7: 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, 47

Area 8: 10, 27, 28, 29, 30

Area 9: 11, 12, 33, 36.
The grouping error (3.47) normalized with the number of follower machines is
0.74. The average value of the elements of L approximated by one is .63 and
the average value of elements of L approximated by zero is .05. In average,.
the discrimination factor is 0.85 (compared with the maximal value of 2).
However, for some machines like 10, 14, 24, 25, 31, 32, 33, 37, 38, 42, and 47

the discrimination factor is much smaller than the average value. For example,




Table 3.1.
5 39
0.56 -0.00
0.60 -0.00
0.83 -0.00
0.83 -0.00
0.84 -0.00
0.33 -0.00
0.85 -0.00
0.58 -0.00
0.18 -0.00
0.07 -0.01
0.08 -0.01
0.10 -0.00
0.11 -0.00
0.04 -0.00
0.02 0.01
0.02 0.00
0.03 0.01
0.03 0.01
0.02 0.00
0.03 0.00
0.06 0.00
0.09 0.00
0.11 -0.00
0.10 =0.00
0.07 -0.00
0.02 -0.0C
0.04 -0.00
0.02 0.05
0.00 0.24
0.00 0.04
0.00 0.01
0.00 0.32
0.00 0.38
0.00 0.28
0.00 Q.47
0.n1 0.00
0.02 -0.00
0.00 0.00
0.02 0.00
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for machine 33, DF33==0.06. All the machines with a small discrimination

factor will be called critical machines. Note from Figure 3.3 that all the

critical machines are border machines of their respective areas, but not all

the border machines are critical machines. Despite the presence of the
critical machines, the area grouping is good, as will be shown in Section 4.7

by some characteristic machine responses.

3.6. Area Variables and Intermachine Variables

[. In the previous section it was shown that the coherency is equiva-

3 lent to the requirement that a grouping matrix achieves the spectrum separation.
Then, the state variables associated with the subsystem with state matrix B2

) ) are z variables (3.29), i.e., intermachine variables within coherent areas.

{ In this formulation the subsystem (xl,Bl) is still coupled to the subsystem

|

{ (z,Bz). For the separate analysis of these two subsystems it is necessary to
!!! decouple them, and one way to do it is by using the transformation (2.52)

i introduced in Section 2.4,

[y I H xl]

= Al j . (3.50)

Applying this transformation to (3.35) with L satisfying R(L) =0 results in

[; B, P |y

lE 0 B2 z

(3.51)

As shown in Section 2.4, equation P(H) =0 has always the solution, whenever

c . . .
crf\or=(3. However, in this particular case even more can be concluded.

—v v
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1

Lemma 3.13: Consider the matrix A= -M

K of (3.11), where K is symmetric and

M is tne diagonal matrix of machine moments of intertia, whose (rxr) and

(n-r)x(n-r) diagonal blocks are M1 and MZ’ respectively. Then each solution

L of R(L) =0 corresponding to some Os and the corresponding solution H of

P(H) =0 are related by

T

_ -1 T
H = (Ml4-L MZL) L MZ'
Proof: Let us first rewrite R(L)=0 and P(M) =0 as

[ 1

[-L I] A =0
| L
=

(1 H] B = 0.
i I

; . _ -1
Substituting B-—TLATL

-H
[I-HL H] A
I-LH

into (3.54) yields

-H
[I-HL H](-M’IK)M'IM [
I-LH

a1 -M, H
[(T-HL)M M, AT = 0,

M, (I-LH)

Pre- and post-multiplying (3.53) by [M2(I—LH)]T and [(I-HL)MIl]T and

comparing to the transpose of (3.55), we obtain

T T
N = - N\
H "1 (I~LH) .121..

which simplifies to (3.52).

The same relationship can be obtained by modal methods [16].

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

Under

the conditions of this lemma the complete transformation from x to (v,2)

shtontalin.
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variables is

y M; 1 M;]'LTMZ o+
= 2 (3.57)
z -L 1 X
where
M =M + LML (3.58)
a 1 27 :

If the system is r-decomposable then H has the same 'zero-nonzero" pattern
as Lz and we denote it by Hg. With Lg and Hg used in (3.57), an interesting
interpretation of the physical meaning of y and z variables follows. First,
notice from (3.58) that in this case Ma is the matrix of area inertias, i.e.
the i-th entry contairs the sum of moments of ingrtia of all the machines in
the i-th area. Then from the first row of (3.57) we get immediately that

y variables are familiar "'area center of inertia'" [41], given by

y; = L ijj/Mai’ for all j in area 1. (3.59)
J

In summary, in the case of r-decomposable systems by dividing the system into
coherent areas, it is possible to construct directly two low order subsystems,
one describing the dynamics of intermachine oscillations within coherent areas,
and the other describing the interarea dynamics. For the r-near-decomposable
system we still apply the same transformation (3.59) and (3.30). We will get
the two subsystems which are weakly coupled, rather than completely decoupled.
The same is true for models with damping and nonlinear models. When the
spectrum defining coherency is given as r slowest eigenvalues of A, the pro-
cedure will result in y variables being the slow states and z variables being
the fast states of the system. For the r-near-uecomposable systems, their

basic slow, i.e., fast character will be retained, which means that bv means
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of coherency the mixed state model (3.11) is transformed into singularly
perturbed form. 1In [25] it was shown that application of singular

perturbation on the transformed model gives excellent results in terms of
eigenvalue approximation of the reduced subsystems compared with the full
system eigenvalues.

More properties of the slow coherency will be given in

the next chapter.
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4. SLOW COHERENCY, WEAK COUPLING, AND NONLINEAR EQUIVALENTS

4.1. Introduction

In this chapter we show that only if coherency is defined with
respect to the slowest modes of the linearized system (3.11), the resulting
areas are weakly coupled, i.e., weaker than for any other partial coherency.
The area boundaries are in this case relatively insensitive to small loads
and paramete: changes. These two factors taken together indicate certain
robustness of area boundaries, making them useful for nonlinear system

analysis. Possibilities for using slow coherency for analysis of nonlinear

models are discussed and conclusions verified on a 48 machine system. Benefits

in numerical identification of coherent areas resulting from using slow
cohevrency are discussed at the end.

There is no previous published work on the relation between
coherency and weak coupling, as well as the analytical study of the sensiti-
vity of area boundaries to parameter changes. However, the use of linear
coherency for aggregation of nonlinear models is implicit, or alluded to in
{16,19,41,43]. Other uses of slow coherency considered in this chapter [45],
which exploit the connection between time scales and coherency, are based on

gingular perturbation theory.

4.2. Electromechanical Equivalent of Area Dvnamics

As a preparation for exposition of the main result of this chapter
concerning a relation between slow coherency and weak coupling between areas,

we first study aggregated models of the linearized svstem (3.11). This
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analysis is extended to nonlinear models in Section 4.6. Once areas are
identified, their aggregation is intuitively appealing to a power system
expert [19,41]. Each area is represented by one generator, those are then
suitably interconnected to preserve the total power interchange between
areas. The resulting interconnection matrix is generally nonsymmetric [19].
In this séction we proceed differently. We use analytical tools of Chapter 3
to establish aggregated models and their properties. One of the results is
that the aggregated model has the same structure as in previous approaches,
but the interFonnection matrix is symmetric, so that it can be modeled as a
passive network without phase shifters. The result is given in the following
lemma.
Lemma 4.1: Let the coherency in the system (3.11) be defined with respect
to a spectrum o_ containing zero eigenvalue, and let Lg: R(Lg)=() define
corresponding areas. Then

(i) the aggregated model of (3.11) which reproduces area dynamics

is defined by

y = Sx (4.1)
where
S=(I-H L +H ). 4.2
( g s g) (4.2)
(ii) The aggregated state matrix F= Bl==All+A12Lg can be factored
as -1
Bl = Ma Ka (4.3)

where Ma is the diagonal matrix of area inertias (3.50) and Ka is a symmetric

matrix defined as
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K = (1 L:) K . (4.5)

(iii) B1 is a function of connections between machines in

different areas only and not a function of connections between machines in

the same area, i.e.

z T ok, i#j
Pq J
pEI(1i) q€I(j)
L. = . (4.5)
1ja
hj .
-1 , i=j
oy 1t

Before giving the proof let us emphasize the following. In the standard
aggregation approaches [6,7], the main concern is to obtain a low order ﬁodel
which reproduces a given spectrum. In application to the electromechanical
model of power systems, once Lg and the corresponding H are known, more can
be achieved. Namely, the complete decomposition of the system into two sub-
systems is possible in such a way that one subsystem reproduces the given sub-
spectrum, and the other subsystem reproduces the complementary subspectrum.
Proof: (i) The form of S follows from (3.55) and (3.50). In comparison to
the general form of aggregation matrix given in [5], S=P(I O)X—l, it can be
seen that in this case P==Xr, i.e., it is the r-dimensional principal submatrix
of the modal matrix X.

(ii) Again with reference to the general form of the aggregated
= SAS+, we see from (2.7) that the r.h. side inverse

1
+ + T : : . . -1.T
S is § = (I Lg) . Using the particular form of the solution dg==Ma LgMZ (as

state matrix [4], F=B

given in (2.50)), we get S==M;1(I -+Lg)TM from which the result follows

immediately.




(iii) The result (4.5) follows by noting the specific 'zero-one"
structure of Lg and the fact that the diagonal elements of K are the negative
sums of off-diagonal elements. The above properties are best illustrated by
an example.

Example 4.1: For the (hypothetical) system in Figure 4.1, the matrices M
and K are as given below. We will find a grouping matrix for this system, and

then analyze the corresponding aggregated model B

1
M = diag(5,1,4,1,1)
(-5 2 0 2 1]
2 -3 0 o
K=| 0 -4 2
20 1 -3 0 J
L1 0 2 0 -3]

If r=2 and ¢, = {0, ks}, then

1
L =10 1
g
0 1 1
satisfies Riccati equation (2.13) and defines coherent areas as indicated in 1

the figure by the dotted lines. The matrix Hg is given by

ar |3 0 0 )
H=MLM=
g a g2
s 1 1
3 3
Then from (2.9) B1 is j
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Ideally coherent System,

Figure 4.1,
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(M 0171 (- 4k +k. ) . k, +k, +k
B. = A .+A L = 1 12 714 7157 ¢ 12 14 15
1T A T . L

L 2 21 : 21

R B 5

= b
LO 1 3 -3

which gives a nonsymmetric interconnection matrix. However, by (4.3) the

same Bl can be written as

S e 0 124 k122
1 )
0 MM, e kyq, “kpp,
kj0a= Kppa™ kyptky Fhygtkyytky tkag
9 011 [-9 9
B = ’
L 1o 3 9 -9

i.e., in terms of the symmetric interconnection matrix. The initial condi-
tions for machines are computed using the transformation (3.52) with the

particular values for Lg and Hg' v

4.3. Structural Conditions for Coherencyv

Using the fact that in the case of coherency Lg and H_ satisfy
o [=]
Riccati (2.13) and Lyapunov equations (2.49), respectively, allows alterna-
tive formulation of the coherency directly in terms of network and machine

parameters. The following lemma states the result,
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Lemma 4.2: A necessary and sufficient condition for a system (3.11) to be

divided into r coherent areas according to Definition 3.1 is that

(1)
vkvzbkl cos ekz vjvlbjzcos ejl
z ( - m ) =0 (4.6)
EI(1) M k|
i=1,2,...,r; j=r+l,...,n
or equivalently
(i) Elii— I v,v,b,,cos b6 =
Mi 2€1 (k) i1 if
M k
—= I v,v.b, . cos 6 _. 4.7)
Mj €T (1) L343 i

i=1,...,r; j=r+l,...,n.

For simplicity of notation it is assumed k=k(j) to mean the repre-
sentative machine of the area containing j.

Proof: Condition (4.6) follows from (2.13) directly by inserting Lg for L,
and (4.7) follows from (2.49) by inserting Lg and Hg for L and H.

Similar conditions were also obtained in [21] using a different
approach. These conditions are interesting in that they emphasize the role
of network and machine parameters in forming areas. For most networks and
loading conditions cosine terms in (4.6) and (4.7) can be approximated by 1.

Then the two conditioms say that if

V'VQb'g
a,, = ¢ =4 i=1.2,...,r (4.8)
It ety M
j#e j=r+l,...,n

is defined as electromechanical distarce of machine j from the area i, then
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all the macines in the coherent area k have the same distance to a given
area i, where i,k=1,2,...,r.

For the 48 machine system of Section 3.5, Table 4.1 gives the
average variation of this distance for each of the nine areas. The conditioms
of the lemma guarantee partial coherency, but they do not take explicitly into

account the spectrum corresponding to the coherency.

4.4. Weak Coupling Between Areas

So far we have considered partial coherency with respect to any
prespecified spectrum cr, with the only restriction that it had to contain the
zero eigenvalue. In this section, as well as in Section 4.5, we will show
that the slow coherency, i.e., the case when 7. contains r slowest eigenvalues
of (3.11), has particularly useful properties.

The basis for the following analysis is the result of Section 4.2,
which establishes a link between coherency defining spectrum and the strength
of connections between areas. Before stating the new result, we introduce
several definitions, similar to the definition of the electromechanical
distance (4.8).

Definition 4.3: The electromechanical connection between areas i amnd j is

defined as

p.. =M1 3 Lok, it (4.9)
1 3; pe1(i) ¢€1(j) P9

i,j=1,2,...,r.

Sl




Table 4.1. Average violation of
system.
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L S i =y

the criterion (4.6)

for the 48 machine

Area > 1 2 3 4 5 6 7 8 9
L 4
1 09 | - - - - - - .02 -
2 - .04 - - - .07 - - -
3 - - .13 - .02 - .01 | .06 -
4 - - - - - - - - -
5 - - - - - - - -
6 - .03 - - - .05 .02 - .01
7 .01 - .03 - .01 | .01 .09 .02 .01
8 .03 - .01 - - - .07 ) .10 .02
9 - - - .01 - .01 .02 .01 0
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The electromechanical connection of machine i to the system is

Di = jngij' (4.10)
it
The total interconnection of the system is
T
DT = iilni' (4.11)

Assuming that the cos terms in kpq are approximately 1, then all these
connection measures are basically measures of electromechanical distance. We
also define

Definition 4.4: The measure of the maximal strength of the aggregated model

T

XK X
m_ = max

s X XM X
a

s (4.12)

which is the biggest ratio of the potential over the kinetic energy in the
aggregated model.

We are now ready to characterize different types of coherency.
Lemma 4.5: Suppose that in the system (3.11) there are several different
Lg;R(Lg)=o, each corresponding to a different spectrum O Suppose that one
9. contains r slowest eigenvalues of the system, i.e., it defines slow
coherency. Then,

(i) the total interconnection of the system, DT’ is the smallest
for the slow coherency case;

(ii) the maximal strength of interconnections, Mg is the smallest

for the slow coherency case.




Proof: The proof uses the relation between eigenvalues of o, and area inter-

connections established in Lemma 4.1, and various definitions of eigenvalues.
(i) This property 1is established using TrBl= Z Ai, 1€%» the form of
i=1

diagonal elements of B, which are given by (4.5), and the fact that this trace

1
is the smallest for the slow coherency case. (ii) This property can be
derived using eigenvalue definition via the Raleigh-quotient [27] and the

fact that the largest of the slow eigenvalues, which is equal to m_, is the

g?
smallest in the case of slow coherency. The results of the lemma indicate
that slow coherence has the property to divide the system into weakly coupled
areas so that the total sum of interconnections is minimized. Since for a
given system the total sum of connections between machines 1is equal to the
total sum of interconnections between areas and the sum of connections inside
areas, it follows that the slow coherency also maximlzes the total sum of
internal ccnnections in the areas. This property will be further clarified
later on in this section. With this result an interpretation of the slow
coherency can be the following: it is a result of groups of machiens being
strongly coupled inside the groups and weakly coupled between the groups. The
results concerning the slow coherency are global, that is, for the whole
system rather than for each individual subsystem, although as we will see
later on the weak coupling property can be stated as the average property of
each subsystem, which is also observed on the example system. Table 4.2 gives
interconnection patterns for the 48 machine svstem divided into 9 areas based
on slow coherency. Entry tij in the table gives relative electromechanical
connection between areas i and j, where scaling is done with the total con-
nection of area i, i.e., t..=Dij/Di. Entries less than 17 in magnitude are

ij

denoted by -. Several observations can be made from the table.
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Interconnection strength between coherent areas of the 48
machine system.

2 3 5 6 7 8 9
L @ - - - - |15 |9 -
b -
3 - 9 - 3 12 -
» - - - 4 7 - 32
[ ® 4
.
: 5 3 34 17.5 3 3 -
e ; o | 1 s @) -
- 17.5 9 2 @ 7 6
[
M 8 - 5 - - 7 3
{ 9 - - - 5 14 7 @
5
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(1) 1In all cases ti , 1.e., connections inside areas are

17 %13
stronger than the connections between areas.

(ii) The cases of stronger interconnections (for example "t26")
are the cases where some machines in areas 2 and 6 are grouped based on rows
of Ld which were not close to zero-one pattern, see Table 3.1.

(iii) The state matrix A has the same block-diagonal structure as
Table 4.2, if the rows are ordered so that all the machines in area 1 come
first, then all the machines in area 2, and so on.

These interconnection properties reflect on the characteristics of

the fast dynamics, determined by the matrix B2 of (3.10). 1In the remainder of

this section we will study the properties of Bz. From equation (3.10)

Bz==A22-LgA12. Using Lg we can easily derive that the elements of 82 are
given by
%5q ™%k (p) 1 1
- : (4.13)
ij n
-Rzlapl-ak(p),p’ i=j, p=itr, q=j+r
L#p
From (2.7), (2.9), and (2.10)
tr B2 = tr A-tr B1 (4.14)

it is easy to see that trB2 contains the total sum of connections between

machines inside coherent areas. Since in the case of slow coherency

Fr 82!>ltr Bﬂ

n
- = , (r‘iz) (4.15)

it follows that the average connection strength within areas is higher than

the average interconnection strength., To state this simpler: on the average,
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connections are stronger between machines inside the same area than between
machines from different areas. A consequence of this property is that the
matrix 82 is also block-diagonally dominant, as is A. 1Its diagomal blocks,

of size equal to the rumber of follower machines in the areas, are functions

of elements of A corresponding to the connections of machines inside areas,

see (4.15), and off-diagonal blocks are functions of interconnection elements

of A. Hence the diagonal blocks have larger norms than their off-diagomal
blocks. When the interconnection table is formed for B2’ the same way Table 4.2

is formed for A, the entries in the table are almost identical to those for A.

4.5, Sensitivity of Area Boundaries to Parameter Changes

In this section we will show that in the case of slow coherency areas
are not only weakly coupled as éstablished in the previous section, but also
area boundaries are relatively insensitive to small changes of network para-
meters. The first step in this study is to evaluate the changes in the steady
state matrix A, for small changes in network parameters. A similar problem
has been treated in power system analysis within so-called security analysis.
Security analysis is concerned with the problem of fast computation of the
equilibrium state after some given disturbance. These methods, surveyed in
[42], are numerical in nature, despite the fact they use various forms of
sensitivity relations to achieve necessary effectiveness. There are two
characteristics which distinguish the approach in this section from the
security analysis approach. First, our ultimate goal is to evaluate the
change of Lg after a change in network parameters, and second, we will use the

analytical, rather than numerical approach, with the purpose of gaining

Al ln

Aok ok
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insight into the behavior of area boundaries. For that reason we will
consider only the change of admittance elements (which may model a line
outage, for example).

Qutage of a line between nodes i and j affects matrix A in two

ways: first, it directly changes admittance yij,y , and second, it

changes the equilibrium angles §,,i=1,2,...,n. Angle changes can be

0
analyzed from the DC load flow equations [52]
P =B-8 (4.16)

with

P - n-1 vector of active power injections into the nodes

of the system
B - admittance matrix,reactive part
8 - n-1 vector of angle differences Gi-ﬁn, i=1,2,...,n~-1,

After a line outage B changes to

B' = B + AB (4.17)
where
B = Ab .e .el, (4.18)
ij ej ij .
Abij - the change in admittance of the line (i,j)
ezj - row vector with all zero elements except the i-th, which

is 1 and the j-th which is -1.
For small Abij the change in equilibrium angles can be found as {42]

re = -8~ Lame. (4.19)

Using the symmetry of B a bound for the change in 6 can be established as

1
5.~8,) ——=— .
fFael < Abij( i J) min| A(B) |
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This expression shows several facts: (i) in systems working close to their
static stability boundaries, even small changes in parameters can cause big
changes in equilibrium angles, (ii) parameter changes in higher loaded lines,
and (iii) bigger parameter changes can cause bigger equilibrium changes.

In the rest of this analysis we assume that parameter changes are
small so that the linear analysis can still be applied after the disturbance.
Hence in determining sensitivity of area boundaries we concentrate on the
effect of the admittance change (4.17). We want to see the effect of this
change on the change in Lg==Ld. We approach the problem by studying how the

I
slow subspace of A changes. From Lg==Ld it follows that V0==[L ] is a basis

of the slow subspace of A. To find a first order variation of fhis subspace
corresponding to the disturbed matrix A'==M71(B+AB) we use Lemma 2.11 and
apply only one simultaneous iteration to A' with Vo as the initial condition.
To make the slowest spectrum dominant prior to applying the simultaneous
iterations, we shift the spectrum of A, as well as the spectrum of A', for
some 1 to the right. This is possible in this case since all eigenvalues of
A are real and in the left hand side of the complex plane, by assumption. The
result on the variation of Lg is given in the following lemma.

Lemma 4.6: Suppose that for the system (3.11) cos terms in (3.6) are
approximatley 1, and that there exists Lg==Ld s.t. R(Lg)=(). Then for a suf-
ficiently small perturbation AB of the type (4.17)

(1) if i and j belong to the same area, the first order variation

of Ld is zero

(i1) if i and j belong to different areas, the first order varia-

tion of Ld is zero except for rows i and j.




- o WM W e

97

Proof: Let A= A+nA = M-l(B+AB). Due to the linear convergence of the
simultaneous iterations (SI), one suitably defined SI may be used to obtain
a first order variation of the slow subspace of A when perturbed as A+ AA.
For that we have to make SI converge to the slow subspace of A'. This we do
by using (2.40) and A" =A"+uI, pzlnax|l(A)|, instead of A. The ir “~ial guess
is V ==[£;] , which is a basﬁf of the slow subspace of A. After + 81,
V1==A"V°. Using (M‘lB+pI) [Lg] = [;;] (Bl+uI) and the fact that +ul) is

nonsingular, we can write

Vl = [Vo + AV] (4.21)
where
11 |t -1
AV = AbijM eijeij . (Bl~+uI) . (4.22)
g

In case (i), e .Vo==0 because i and j belong to the same coherent area. In

ij
case (ii), it can be seen from (4.22) that the conclusion follows directly.
Hence, the lemma indicates that for small parameter changes of the type (4.17)
all machines remain in their predisturbance areas, except possibly the
terminal machines i and j. An easy extension of the above argument can be
used to show that if 4B is modeled to account for parameter changes of more
than one line within one coherent area and no changes in the others, the only
nonzero rows in the matrix AV are those corresponding to the machines in the
affected area. This means that in the case of a disturbance only machines in
the affected areas may migrate from this area, and probably only the boundarv

machines. Due to the weak coupling between areas the situation as assumed

above may model a line outage within a coherent area.




A natural question which arises after this analysis is how can the
predisturbance areas be used in the determination of areas after a disturbance.
There are several possibilities.

(i) When the allowed computation time is minimal and the distur-
bance is small, the predisturbance areas can be used.

(ii) The first order variation formula (4.22) can be used to
decide how to group borderline machines. Any decision about dislocating
machines can be checked via the criterion (4.6) (only for the affected area
and the machines in it).

(iii) Use the exact matrix A' (from a load flow or static state
estimator) and Vo as initial guess to perform necessary number of SI. A
simplification in this approach can be obtained if far from disturbance areas
are replaced by their slow equivalent derived in Section +.2. This is equi-
valent to some sort of condensation used in structural mechanics [45].

The following example using the 48 machine system confirms the
expected robustness of area boundaries with respect to the parameter and load
changes, and hence indicates that area boundaries will have to be changed
only infrequently. The example corresponds to applying the alternative (iii)
above for finding areas of the network with different configurations. Three
network configurations are considered. For each the exact L, is computed

d

using the corresponding linearized state matrix. The areas are obtained by

approximating this L, by an Lg as explained in Chapter 3.

d

Case one is the nominal configuration of the svstem, which has been

considered so far. For this system, L

d is given in Table 3.1. The corresponding

Auina.
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areas are given in Figure 3.7. Case two is the same network, but after
switching a line in area 1 [45] following a disturbance in the area. The
third case is similar to case two, but with a line disconnected in area 7.
Inspection of the elements of Ld for all the three cases shows that none of
the machines changes its area belonging except for the machines 1 and 2, which
in case 2, instead of being grouped with the area 1, become a part of area 7.
The rows of Ld corresponding to rhree characteristic machines, machines 1, 2,
and 9, are given in Table 4.3 for the three network configurations. The dis-
crimination factors for machines 1, 2, and 9, also given in the table, are
considerably smaller than the average value of DF (for case one), which is 0.85.

It is interesting that the reference machines in all three cases remain the

same.

4.6. Use of Slow Coherency in Nonlinear System Analysis

Weak coupling between areas in the case of slow coherency and insen-
sitivity of area boundaries to small parameter changes indicate the possi-
bility of using coherent areas of the linearized model (3.11) for the nonlinear
system analysis. Existing coherency methods [19] use, in fact, the linearized
model to identify coherent areas, and use them for nonlinear system
analysis. In this section we will analyze aggregation of the nonlinear model
using the block diagunalizing transformation for the linearized one. This
analysis is along the lines of the approach in Section 2.5, except that here
we take explicitly into account the specific structure of Lg and Hg‘ Later in
the section we discuss different possibilities for approximate svstem analysis

based on tne division of the system into slow coherent areas.
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The nonlinear model (3.3) reduced to machine terminals is
rewritten here for convenience.

.- SIS
§ +M DS =M (Pm Pe(d)) (4.23)

Similarly to the approach in Section 2.5, we apply the transformation

y
§ =08 +1 [] (4.24)

using slow and fast deviations around the equilibrium, y and z, respectively,
and the block-diagonalizing transformation of the linearized model T from

(2.52). 1In component form (4.24) becomes

M

6,=62+y,- 5 ﬁ#‘—zl, ieR
1 eI (1) ai
] M, (4.25)
6. = 6. + y - Z o 2z P iEJ
L3k gerao Ma *

where

k = k(i) - representative machine for the area containing i
J(i) = I1(i) - {i}

Mai = z M£ .
2EI(1)

After some manipulations with the transformed variables in (4.23), we get

§, 4Dy, I DE =P . -P ., i=1,2....,r (4.26)
atl segqp) 99 m
D. D D, D M

.. ik kK °§ g .

o4 GL-DOy (k) + (e-h) T — 3

I My M Me M er) Mak ¢
D, Pm' Pmk Pe' Pek

+FT.1 2, = (Tfl' Mk) + (‘p‘fl‘ﬁ_) je s (4.27)

i j j K




P .= I P (4.28)
mai RET(1) mi

D . = £ D (4.29)
t. al  perqay *
g P .= I P_.. (4.30)
:. eal eI (1) ei
_.
. Equation (4.26) describes the area motion, while equation (4.27) describes
1 the intermachine motion. For small variation around the equilibrium point,
;. these two equations are decoupled. We assume that even for large excursions
3
around equilibrium, variables y basically determine area motion and variables
z the intermachine motion. We now analyze in more detail the area motion.
iC, Writing power output of area i, Peai as the sum of intra- and interarea load
flow, we get (after a few manipulations) the accelerating power of the area in
: the form
4
! Fai(y’z) : Pm.ai—Peai B
’ Il b, sin(s° (2))]
b = - z . sin(§, +v¥, (z cos vy,
: 2=1 jJ€I(i) ser(r) 3° Jjs I8 it
@ L#i
r )
+ I z L b, sing;
L=1 jE€I(i) se1(r) 1% Js
s L#1
’v
& -z I b,,sin(sS,+¥. (2))
JEI(L) #€I(i) J J
S r o
. -z ( T T b, cos(§, +v, ))siny“
X 1=1 JEI(i) s€I(L) Js Js Js
@ i
= Pmai(y,z)-Peai(y,z) (4.31)
o
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where

P - the first three terms in (4.31)
mai

Peai - the fourth term in (4.31)

H
¥(z) = z, V¥ =y -y
I+LH> 3 1 3

From the linear system analysis, the following is true.

Proposition &4.7: Assume Lg and Hg satisfy (2.13) and (2.49), for system

(3.11). Then:

(1) Pmai(o’o) =0 (4.32)
(ii) szai(O’z) =0 (4.33)
(ii1) dmeai(y,O) = 0. (4.34)

Proof: (i) and (iii) follow directly from (4.31). The property (ii) follows
from the block diagonalizing property of the transformation T for the
linearized model,

Based on these properties we make

Assumption 4.8: The terms y(z) have a small effect on y and can be neglected

in (4.26) and (4.31).

With this assumption the model for area dynamics can be realized
as a machine-impedance system, as explained in Section 4.2, but with time
varying input §mai(y,0). The other possibility exploited in [43] is to
sacrifice the symmetry of the network for the advantage of having the

constant mechanical input. In this model, accelerating power is written as

Yi Sln(yi1+.diz) + Pmai (4.35)
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where
2, - g2, + biz (4.36)
g5y = jelz(i) octiybes &18 53’8 (4.37)
bif, = jGIz(i) seIz(l)bjs cos G;S (4.38)
@, = arc tg éif-. (4.39)

In this model power input is constant and each line requires one phase
shifter, which eliminates admittance symmetry. Let us now analyze the

intermachine dynamics. In equation (4.27) the following is assumed.
D

D,
Assumption 4.9: The contribution of (ﬁl--J§-(-) is smaller than the contri-

e

in equation (4.27) so that it can be neglected.

D
bution of ﬁi z

A
J
Then, the equation of intermachine motion becomes
. . Ei . .
(dj—ék) + Mj (Gj—ék) = Pmd"Ped (4.40)
where
ij Pmk
P = - — (4.41)
md Mj Mk
P P
p  =-of _ _ek (4.42)
ed MB Mk

Equations (4.40)-(4.42) hold for any partial coherency. However, in the case
of slow coherency furhter simplification is possible by using the weak
coupling between areas. In this case it can be assumed that the fast
variables are excited (different from zero) only in the area in which the

disturbance has occurred. The model for fast dynamics now becomes
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, D, - 1
8§, +%+6 =P  += ¢ b, sin(s, -5
ik TM Tk T Tnd M et 32510085 =8g)
L#]
+L 3 b sins, -P jeF (4.43)
M eeI(k) k4 %k o k

2#k

where

é}k - is the set of all follower machines in the affected area k
and Po is artificially added to satisfy the equilibrium

condition (6,

Jk=6jk=0).

Equation (4.43) can be solved independently from the equation for
the slow dynamics. However, the solution angles are with respect to the
reference machine angle, which becomes known only after the slow subsystem

(4.26), (4.31) is solved and the transformation (4.25) is used.

4.7. 48 Machine Example

This section starts with a brief discussion of the results already
given for the 48 machine system in various sections of Chapters 3 and 4. In
addition we will also use system responses to illustrate some of the developed
theoretical points.

In Section 3 the 48 machine system has been divided into nine areas,

based on nine slow modes and the corresponding L, approximated by an Lg' Our

d
choice of slow coherency, rather than any other coherency was motivated by
the weak coupling property of the areas, demonstrated in Table 4.2 and

the robustness of area boundaries, demonstrated in Table 4.3. These pro-

perties of slow coherent areas, derived on a linearized model, will be further

substantiated in this section by using system responses of the nonlinear model.

R4
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First we check the definition of slow coherency as given by
equation (3.29). For that purpose a fault is applied in area one followed
by switching off a line. The definition of areas is kept the same as in
the predisturbance linearized system. Exact nonlinear responses are obtained
and then the slow coherency definition checked by forming the differences of
responses of machines inside the areas. As expected the area with the most
excited intermachine motions is the disturbed area, i.e. the area one. Some 2
variables for this area are given in Figure 4.1 (see also [45]), and their
slow components are given in Figure 4.2. It can clearly be seen that the
difference variables contain some slow dynamics; basically all the individual
machine responses agree in their slow motion. In our definition of slow
coherency we tolerate an arbitrary magnitude of z variables. This is one of
the key differences with the other coherency definitions [19], which restrict
the magnitude of z also. 1In this particular example for all the machines of
area one to be in the same coherent area according to the latter criterion
the tolerance should be (see Figure 4.1) about 250, but with this tolerance
it may as well happen that many areas collapse into one area. With our

approach of identifying areas based on approximation of L, by an Lg, we avoid

d
a need for specifying the above tolerance criterion, which may, as indicated
above, significantly affect the found areas.

The next figures also illustrate the robustness of area boundaries
to parameter changes, which for the linear case was illustrated by Table 4.3.
For this purpose a fault was applied in area 7, followed by switching a line

in the same area [45]. We now give, for the sake of comparison, the responses

of machires in area 7. Figure 4.3 contains machine angle differences and
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Figure 4.4 contains their slow components. Again as in the previous case
the definition of slow coherency is satisfied for area 7 as well as for all
other areas.

The third group of figures illustrates results of various approxi-
mations in the simulation of the nonlinear model.

Approximation 1 (Al): In this approximation the singular perturbation approach,

similar to the one in Chapter 2, was applied to the model (4,26), (4.27).
Namely, the fast system (4.27) is assumed to be stable for each value of y(t)
and infinitely fast, so that the set of equations containing differential
equations (4.26) and algebraic equations (4.27) obtained by setting

Z(t) =z(t) =0 is solved. Since these equations describe the slow dynamics,
a large integration step size can be used. However, the number of equations
is still n. From Figure 4.5a it can be seen that the individual machine
responses are well approximated.

Approximation 2 (A2): The weak coupling between areas, which implies the weak

coupling between the fast subsystems in different areas, suggests using

the differential equations for the area affected by the disturbance, only,
and algebraic equations for all the other-areas. The number of differential
equations equals r+ the number of the free machines in the affected area.
Again, the total number of equations equals n. Inclusion of the fast
dvnamics in the affected area improves the accuracy of the responses over the
previous case, as can be seen by comparing Figure 4.5a and Figure 4.5b. The
difference between the exact response and A2 is only due to the fast dvnamics
outside the affected area.

Approximation 3 (A3): This approximation differs from A2 in that outside

the affected area a constant z(t) =z(0 ) is used. However, more
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appropriate would be to use z(t) =2z(~), but this requires solving an additional
load flow. The results given in Figure 4.5c indicate that this approximation
is somewhat worse than A2.

As a conclusion to this series of experiments, it follows that the

approximation A3 seems to be a compromise between accuracy and integration cost.

Note however, that these simulations cannot indicate only the instability due

to the fast dynamics outside the affected area because in all the approximations

it was assumed that the fast dynamics, i.e., intermachine motion is stable.
Due to the weak coupling between areas this does not appear to be a serious
limitation. Therefore a justifiable approach to the system stability would
be to use the dynamic equations for the area dynamics, and the fast dynamics

for the affected area only.

4.8. Numerical Aspects of the Slow Coherency Algorithm

Slow coherency proves to be easier to identify numerically than
other types of coherency. In view of the grouping algorithm of Section 3.5,
this is to say that it is somewhat easier to find a basis for the slow eigen-
space than for any other arbitrary eigenspace (excluding the fast eigen-
space which is physically unrealistic to be used for coherency definition).
This section is devoted to the discussion of various methods for computing
a basis for the slow subspace, with the emphasis on large and very large
systems. By large systems we mean systems in which the computation of all
eigenvalues and eigenvectors is expensive, but their state matrix A can still
be manipulated in the core of an available computer. Very large systems will

be those in which the state matrix cannot be processed in core; computation
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v

-~

of all eigenvalues and eigenvectors is almost impossible. Independently of

the system size there are two factors that make computation of V easier.

b Joe S am o w4
v

(i) Matrix A is similar to a symmetric matrix (3.14). This

means that special programs can be used which are faster and more economical

in memory use than the programs

for general matrices.

(i1)

say), while the space they span is not.

can be used.

values, eigenvectors are very sensitive to parameter changes (numerical

Arbitrary basis of the slow elgenspace can be used, rather

than the eigenvector basis. In the case of identical or very close eigen-

error,

Therefore any basis of that subspace

Most of the existing eigenvector programs compute efficiently

an arbitrary basis corresponding to a multiple eigenvalue and then spend most
of the time trying to compute exact eigenvectors.

For the large systems there are already available production
programs [46] which compute V.

The conclusion [46] is that if, roughly, r‘<%,

which can be considered satisfied in coherency identification, then the

special purpose programs for partial eigensolutions are superior to the

ones that compute all eigenvalues and eigenvectors.

Following recommendations

q of (46], the bisection method seems to be a desirable choice.

In

the frequency range defining coherency, rather than the number of

should be specified.

B ot mun aen o

e Alternatively, a very simple method of Chapter 3, based
iterations (2.41), can be used. For this method an initial guess

machines needs to be made.

Figure 4. 6.

this method

slow modes,

on Riccati

of reference

Good guesses result in faster convergence to the
e solution; poor guesses may require many more iterations, as is evident from

Curve a corresponds to a good choice of referciice machines,

PP
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Figure 4.6. Behavior of Riccati iterations for the 48 machine system;
(a) a good guess of reference machines, (b) a poor
guess of reference machines.




114

in fact to those that are found by the grouping algorithm. Curve b corre-
sponds to éelecting machines 13 and 47 instead of 17 and 29 in the above
choice. 1In this case machines 13 and 47 both belong to the same area (area 7)
and area 8 does not have any reference machine. If this were the ideal
coherency case, the algorithm would not have converged at all.

Computation of partial eigensystems for very large systems is
still an area of active research [47,48,32]. Almost all the methods of this
group, of which we will mention only a few, have inner product aTx as a
basic in core operation. Methods with this property are simultaneous iteration
methods [49,32], modified simultaneous iteration methods [48], Lanchos
method [49], and modified inverse method [47]. All of these methods have
basically the linear rate of convergence. Some acceleration is possible by
using Tchebishev's transformation [49]. Also, all of these methods can take
advantage of the sparsity in programming the inner-product. However, in the
model (3.11), the state matrix A is dense. We now show, on the example of
simultaneous iterations, that it is possible to use the original sparse
Jacobian (3.4), instead of the reduced one., The result is given in the
following lemma,
Lemma 4.10: Let J be the Jacobian of the unreduced load flow system in which
the first n rows correspond to the generator nodes and the last m rows to the

load nodes. Let
J = , J=17J7, AER (4.44)

-1 .
and assume D exists. Then
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JVo T = EV (4.45)
where

k [.vl K nxn

vV = . VleR (4.46)
LVZ
M 0

E = (4.47)
(0 O

generates for sufficiently large k a basis of the r-dimensional slow eigen-
space of M-l(A-BD_IC)EEMflK, where K is given by (3.8), in the form of the

matrix V. of (4.46).

1

Writing (4.45) in expanded form, solving for V, from the second

2

equation, and substituting in the first equation, gives in view of Lemma 2.11

Proof:

the claimed result.

Use of the sparse Jacobian (4.44) rather than the reduced one as in
(3.11), can result in substantial savings in computation time, as is already

shown in related approaches, see for example [56].

4.9. Summary of the Chapter

In this chapter we have shown that the equivalent for the area
dynamics in the linearized model can be realized by a symmetric network
connecting r generators, each representing one area. In the nonlinear model
the same structure can be retained under very mild assumption, but with time
varying mechanical input, or alternatively, asymmetric network and constant
It is concluded further that for most networks and loading

input.

conditions, the coherency is largelv determined by network parameters




e

and machine intertias, rather than by loading conditions. The most important
result is that in the case of slow coherency areas are weakly coupled.
Furthermore, in this very case the area boundaries are relatively insensitive
to small parameter changes. The weak coupling and robustness of area
boundaries are a basis for using areas obtained in the analysis of the
linearized model for the nonlinear system analysis. Several approximations
based on the use of slow coherency and singular perturbations on the nonlinear
model are demonstrated to be accurate and efficient. Numerical aspects of the
slow coherency are discussed in light of the existing methods and research
trends in the field. A sparse formulation of the numerical algorithm for

computing slow basis is given.
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5. SUGGESTIONS AND CONCLUSIONS

5.1. Suggestions for Further Research

In chapter 4 we gave several uses of the coherency. First
we have considered aggregation of linear and nonlinear power system
models. Then by using slow coherency we were able to transform the mixed
state electromechanical power system model into the singularly perturbed
form. Finally, we illustrated several uses of the model in the singularly
perturbed form as well as the weak coupling between coherent areas in
the simulation of the nonlinear model. A simulation of the system is
usually undertaken for the purpose of checking its stability. We now
want to discuss possible uses of coherency and in particular slow coherency
in the direct stability analysis of power systems. In order to do so
we will first sketch the background of the direct stability analysis.

One of the main objectives in the stability studies
of power systems is to determine the so called critical clearing time tc.
This is the time defined for each fault and represents the maximal
duration of the fault for which post disturbance system (which may have
different structure than the original one) remains stable. Large £,
indicates that the system is stronger (more robust) with respect to the
given disturbance. Critical clearing time is then used in the design
of protective equipment (local controls). The problem of determining the
critical clearing time is, however, almost identical to the problem of
determining the domain of attraction around postdisturbance equilibrium -
or stability domain in short.

Stability analysis of power systems at the present time is
basically conducted using simulation of system responses for given

disturbances [59]. Such methods enable use of detailed models of system
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components (machines and transmission elements) and offer flexibility in
using different configurations of the same network. However there are
some disadvantages: (a) computation time.is large, becoming prohibitive
for very large systems, (b) experience needed in interpreting responses

in order to conclude instability and (c¢) no advantage from previous
simulations can be gained when analyzing the same network for different
fault locations. An alternative is to perform a direct stability analysis
based on Liapunov theory [53]. The electromechanical model (3.2), (3.3),
in which the load nodes are eliminated and the admittances between the
remaining generator busses are suitably altered as discussed in

section 3.2, is typically used in such studies. By further manipulations

[53] the model can be written in the form

Ax + B £(y)

o
"

y = Cx (.1)

T _ . .
where x = (wl,wz,...-,(ﬂn,él GN,GZ GN,...’GN']-N)’

o o
£, =V V B i . +6 - gin & 5.2
1(Y) o Vg pqlsm(}'l pq) pq] (5.2)

The relation between indexes i, p and q and the form of matrices A, B
and C are given in [53]. For the model (5.1) of the postdisturbance
network the form of a Liapunov function

y
V(x) = X'Px +2[ £ (u)Qdu = V_ + v (5.3)
o]

and the necessary definitnes conditions are given in [62]. From (5.3)

Moo

the classical transient energy function [61] is obtained with P =0 0.
- J

and Q = I. Having selected a Liapunov function, the next step is to
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find the critical value V(x) = Vc, such that if V(x) < Vc for some x,
then the system is said to be stable. 1In [60] it is shown that Vc equals
the minimum potential energy over all the unstable equilibrium points

of the system (5.1), i.e.

Vc = inf V(x) (5.4)
x€U

where U is the set of all the unstable equilibrium points for the system
(5.1). With known Vc computation of the critical clearing time for

each disturbance proceeds as follows. When the system is subjected to

the disturbance, its response is simulated and the function V(x) of

(5.3) is evaluated along the trajectory. The time at which V(x) = VC is
the critical clearing time. From this description it is clear that the
direct methods are in fact the combination of a simulation and a direct
stability analysis. An inherent difficulty in the direct methods, however,
is computation of Vc, because the number of unstable equilibrium points
of (5.1) is O(Zn), where n is the number of generators in the network,
and to find each of this points requires solving the set of (n-1)
nonlinear (load flow) equations. Therefore the utility of the method
critically depends on the way of computing Vc; its effectiveness is to

be measured against possible savings in computer time over the direct
simulation. There are also other problems summerized below which have
resulted in certain scepticism from power industry toward the application
of these methods [Disc. on 61].

{a) The methods have proven useful for small order systems (several
machines, say); for one machine infinite bus system exact stability

boundary can be obtained.
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(b) Depending on the fault location they can give overly conservative
results when applied to large systems [56]; if parts of the same system
are aggregated, better results can be obtained [56].
(¢) Most of the results for large systems are reported for the electro-
mechanical model and the line conductances neglected. Inclusion of the
more detailed mechine models and the conductances is followed by the
difficulty in finding an "appropriate' Liapunov function.
Despite the shortcomings, the need for direct stability methods which
would complement simulation, exists. The utility of the approach is
seen in the planning stage or on-line security assessment where it would
be used to select some critical disturbances for further study. Here
the initial effort spent on computing Vc would be well compensated by the
repeated use of the same Vc for different faults resulting in the same
postdisturbance network. These methods also offer a basis for studying
the effect of parameter changes on systems stability. In response to
this need, and in an attempt to overcome (some of) the shortcomings,
there have recently appeared several major contributions to the problem
of direct transient stability studies.

First, in [63] it was shown that the potential function
(the integral part of V(x) in (5.3)) is smooth around equilibrium points.
Using this property of the potential function and generalizing the case
of cne machine infinite bus system, in which 60 is the stable equilibrium,
then the smaller of (+m-26°)is the unstable equilibrium with the
smallest potential energy. Approximations of the unstable equilibrium
points of the following type have been suggested by several authors

(See [53] for an overview)
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where superscript "o" denotes equilibrium values, and u, is an approxi-

k
mation of the angle corresponding to the k-th machine becoming unstable.
Variants exist [53] to account for several machines becoming unstable.
Now the search for Vc in (5.4) can be carried out over the set U whose
elements are of the form (5.5). This set may still be large (it has n
elements 1if only one machine at a time is considered to become unstable,
bul combinations often have to be considered as well) so that selecting
the right element remains a serious task. It is interesting to note,
however, that when the separation of a system into groups under a given
distrubance is known, then the Vc computed as the potential energy at the
points of the type (5.5) corresponding to these groups gives favorable
results. A major step forward in finding Vc for a given disturbance has
been made in [54,55].

The main idea is that Vc is the potential energy at the unstable
equilibrium point which is in the direction of the systems motion (the
motion is considered in the space of angles .§). The direction is determined
at the time when the kinetic energy is maximal. This implies that the
system continues to move basically in the direction established during
the fault, even after the fault is cleared. As a consequence the method
proves to be very effective for the so called first swing instability,
which is when & grows without changing signs. On the other hand it is

often inaccurate for multiswing instability, in which case the system
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oscillates several times before becoming unstable. 1In this case the
assumption of unidirectional motion is not satisfied, and a different
unstable equilibrium has to be found in order to compute appropriate Vc'
A group of methods with sound analytical background, but less satisfying
practical results so far, is centered around the use of vector Lyapunov
function approach [53,57,43). The essence of the method is to [58]:

(a) decompose the system into suitable subsystems, (b) find stability
domain of subsystems ignoring the interconnections, (c¢) impose (linear)
bound on interconnections and (d) find the stabilitv region of the
overall system [57].

For the methods to be successfully applied it is essential
that the subsystems are weakly coupled [57,58]. The main reasons for the
conservativeness are : (a) in bounding interconnections it is assumed
that they all act simultaneously in the way which is the worst for the
systems stability, and (b) nonlinear interconnection terms of the form
s = [sin(x+a) - sina ] are usually bounded by €x < S =< cosa * x,
where £ has to satisfy two contradictory requirements: for a large
region of stability to be obtained it has to be as small as possible,
but for the matrix A(£), from & = A(e)VT where V is the vector of
subsystem Liapunov functions, to have all the eigenvalue positive, € has
to be as large as possible. It may happen, therefore, that for a given
¢, which is a design parameter, suitable A(€) does not exist; then &
has to be increased, resulting ultimately in the reduction of the region
of stability. The methods, however, can be very attractive when the

decomposition of the system into weakly coupled subsystems can be made.
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With this somewhat longer introduction into the complex and unresolved
problem, we are now ready to consider coherency in the framework of the
direct stability analysis. Our consideration is basically oriented toward
listing problems for further research.

For the methods based on vector Liapunov function approach the
decomposition of the system into areas based on slow coherency seems
to be the best choice because of the weak coupling between areas established
in chapter 4. If the problem consists of finding the '"slow" stability
i.e. the stability of the interarea motion, assuming that the fast
intermachine oscillations within areas are stable, then the vector
Lyapunov function approaches appear to be applicable. However, when the
stability of the overall system, including the intermachine oscillations,
is of interest (which is the most usual case), then there are several
options. One is to study separately the fast and the slow stability using
models (4.26) and 4.43). For analyzing the fast stability, a method
along the lines of [54,55] will have to be used. The other way is to
aggregate all the areas outside the area in which a distrubance is applied
and study the whole composite system [43].

In summary, the coherency can help in three ways. First,
coherency based aggregation reduces the order of the system. Second,
when slow coherency is used, the areas are weakly coupled, and third, the
machines in the coherent areas have a sort of symmetry (homogenity) in
coupling (4.6). The last property may imply that the criterion (5.4),
with U containing unstable points (5.5) corresponding to the generators

in the area affected by a disturbance, may not be too conservative.
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Among other applications of the coherency decomposition and
possible extensions of the work we mention the following.

‘The electromechanical model without damping was used in the
previous analysis under the assumption that small damping does not
affect frequency of the system. However the effects of the more complete
machine models on the identity of coherent areas should be investigated.

Numerical aspects of the simulation algorithm for weakly
nonlinear systems, the algorithm for identifying coherent areas and the
use of the decomposition for analysis and design still deserve a lot of
attention.

When the slow coherency is used for system decomposition, the
areas are weakly coupled. It is felt that this property and a similar
approach can be used for the decomposition of a power system for use in

steady state (load flow) type studies.

5.2. Conclusions

In this thesis the properties and some uses of coherency in
electromechanical models of power systems have been considered.
It has been shown that the coherency can be treated in the framework of
the spectrum separation problem. This property was essential in defining
the new efficient algorithm for the decomposition of power systems into
coherent areas.

When the coherency is defined as the so called slow coherency,
then the areas are weakly coupled and insensitive to small parameter
changes. This is a justification for using linearized model for defining

areas, and then using those areas in the nonlinear model.
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For the class of r-decomposable power systems with respect to
the slow modes the subsystem whose states are so called center of
intertia variables is the true slow subsystem and the subsystem with inter-
machine variables within areas as states is the true fast subsystem.
Applying the area and intermachine variable transformation to near
r-decomposable systems transforms the mixed state electro-
mechanical model into the singularly perturbed form. Use of the standard
singular perturbation approaches to the simulation of such models was
illustrated on several examples. Analysis of the reduced order models
has revealed the sources of approximations used in going from the exact
subsystems to the commonly used aggregated models, both in the linear
and the nonlinear case.

The numerical algorithm for identifying coherent areas is
designed with the idea to be applicable for large power systems, and heuce
it consists of well conditioned steps and modest use of computer time
and memory. Together with the weak coupling property of the resulting
areas the met >d offers a useful way of decomposing a power system into

subsystems which can then be used in various applications.
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Notation

EgqrVprRe

1 1
eq,ed - flux decay states

Q, 8 - swing model states

Subscripts

d - direct axis quantities

f - main field quantities
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APPENDIX A. ONE MACHINE INFINITE BUS MODEL [34]

AVR - automatic voltage regulator

R, - voltage regulator states

q - quadrature axis quantities
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Full Model

1
o! = ~—=——{._ -y ! r -y ! o)
g Td {- 1+ (Xd x')Y] e (xd x )Yvisin + Efd}
0
.1 e
R, = =— (-R_ + =—E_ )
£ TF f TF fd
el = -l—-{(x -x') YV, cosd - [1 + (x_-x')Y] ejl}
dT('1 q i q d
0

§ =377 (2 - 1)

P
1 in ' .
Q= 7" ['};‘ -D(Q-1) -YVi(eqcosé + edsiné)]

1 _
Beg = 5; { - [K, + S (E )] By + V]
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R T, [K, (Rg - T, Eea Vet VReg) - Vgl

Vt = [(l-x'Y)2 (ec'l2 + eéz) + 2(1-x'Y)(x'YVi)(eécosé) + (x'Y‘\Ji)Z]l/2

Sp(Egq) = A5 .0%P [(B ) (Eg )]
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E For the example of chapter 2 the parameters have the following values
b H = 5.0 sec T, = 0.06 sec
1
E D=2,0 pu TE = 0.5 sec
. = = 1.0 sec
X4 1.2 pu TF
' xq =1.0 pu KA = 25
d
;‘ x' = 0.25 pu K; = -0.0445
! x, = 0.25 pu KF = 0.16
1 ' =5, = 0, 11
i '1‘do 5.0 sec Asat 0.001123
tc
T' = 0.50 sec Boe = 0.3043
90

The operating point 1s defined by

1. + jo. p.u.

<
H.
(]

ve = 1- + jo.2 p.u.

w
e
]

0.8 + jo.1608 p.u.
v =1, p.u.

With these parameters linearization of the model gives the following
state matrix

[ -0.58 0 0 -0.269 0 0.2 0 i
0 -1.0 0 0 0 0.16 0
0 0 -5.0 2.12 0 0 0
0 0 0 0 377 0 0
-0.141 0 0.141 -0.2 -0.28 0 0
0 0 0 0 0 0.0838 2.0
L-173 417 -116 40.9 0 -66.7 -16.7-
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17 18 19 20 21 22 23 24

1. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

2. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

3. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

4, 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000

s 5. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.000
1 6. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
| 7. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
f! 8. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
t 9. 0.000 0.002 0.001 0.001 0.001 0.000 0.001 0.001
- 10. 0.001 0.007 0.004 0.002 0.002 0.001 0.003 0.002
‘ 1. 0.001 0.003 0.002 0.001 0.001 0.000 0.001 0.001
4 12. 0.001 0.004 0.002 0.001 0.001 0.001 0.001 0.001
F' 13. 0.003 0.012 0.006 0.004 0.003 0.001 0.004 0.001
s 4. 0.003 0.016 0.008 0.005 0.004 0.002 0.00; 0.002
. 15. 0.006 0.023 0.009 0.007 0.004 0.002 0.017 0.001
16. 0.008 0.030 0.017 0.010 0.007 0.004 0.003 0.001

. 17. -0.134 0.031 0.024 0.009 0.010 0.004 0.000 -0.000
" 18. 0.011 <-0.173 0.019 0.023 0.010 0.006 0.004 0.001
#c 19. 0.013 0.054 -0.306 0.025 0.024 0.012 0.005 0.001
) 20. 0.011 0.081 0.032 -0.289 0.020 0.012 0.005 0.001
L 21. 0.006 0.027 0.023 0.015 =0.239 0.039 0.003 0.001
4 22. 0.003 0.043 0.034 0.025 0.110 -0.383 0.005 0.002
3 23. 0.004 0.026 0.013 0.009 0.009 0.005 -0.279 0.011
24. 0.003 0.017 0.012 0.008 0.011 0.006 0.031 -0.436

25. 0.002 0.007 0.005 0.003 0.004 0.002 0.009 0.019

26. 0.001 0.006 0.004 0.002 0.003 0.001 0.005 0.009

ﬁ 27 . 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.001
{ 23. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
29. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

[ 30. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
E‘ 31. 0.009 0.028 0.017 0.009 0.007 0.004 0.002 0.001
] 32. 0.001 0.002 0.001 0.001 0.001 0.009 0.000 0.000
33. 0.002 0.006 0.003 0.002 0.001 0.001 0.001 0.000

34. 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000

35. 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

36. 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

K 37. 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1 33. 0.000 0. 001 0.000 0.000 0.000 0.000 9.000 0.000
| 39. 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000
{ 4o. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
E 41, 0.000 0.000 0.090 0.000 0.000 0.000 2.000 0.000
42, 0.000 0.000 0.000 0.000 0.000 0.009 0.0019 0.009

f. u3. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.901
F 4y, 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
45, 0.001 0.004 0.003 0.002 0.010 0.003 0.002 0.003

46. 0.000 0.000 0.000 D.000 0.000 0.000 0.000 0.009

! u7. 0.007 0.034 9.029 0.019 0.134 0.048 0.006 7.006
i 4g. 0.300 0.009 0.000 0.009 0.000 0.000 0.009 0.00v
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.038
. 032
.04
. 0256
. 003
.01
.012
. 009
- 035
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.038
. 005

. 003

.003
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. 005
. 004
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.00
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. 046
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. 025
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. 194
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. 003

. 000
. 001
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077
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